Skip to content

Commit

Permalink
Merge pull request #8 from eliasjpr/refactor
Browse files Browse the repository at this point in the history
[v0.2.0] Refactor and API Changes
  • Loading branch information
eliasjpr authored Dec 26, 2020
2 parents e2bb39b + 1e40377 commit 1cffd0c
Show file tree
Hide file tree
Showing 34 changed files with 715 additions and 740 deletions.
279 changes: 139 additions & 140 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,9 @@

![Crystal CI](https://github.com/eliasjpr/schema/workflows/Crystal%20CI/badge.svg)

Schemas come to solve a simple problem. Sometimes we would like to have type-safe guarantee params when parsing HTTP parameters or Hash(String, String) for a request moreover; Schemas is to resolve precisely this problem with the added benefit of performing business rules validation to have the params adhere to a `"business schema."`
Schemas come to solve a simple problem. Sometimes we would like to have type-safe guarantee parameters when parsing HTTP requests or Hash(String, String) for a request. Schema shard resolve precisely this problem with the added benefit of enabling self validating schemas that can be applied to any object, requiring little to no boilerplate code making you more productive from the moment you use this shard.

Schemas are beneficial, in my opinion, ideal, for when defining API Requests, Web Forms, JSON, YAML. Schema-Validation Takes a different approach and focuses a lot on explicitness, clarity, and precision of validation logic. It is designed to work with any data input, whether it’s a simple hash, an array or a complex object with deeply nested data.
Self validating Schemas are beneficial, and in my opinion, ideal, for when defining API Requests, Web Forms, JSON. Schema-Validation Takes a different approach and focuses a lot on explicitness, clarity, and precision of validation logic. It is designed to work with any data input, whether it’s a simple hash, an array or a complex object with deeply nested data.

Each validation is encapsulated by a simple, stateless predicate that receives some input and returns either true or false. Those predicates are encapsulated by rules which can be composed together using predicate logic, meaning you can use the familiar logic operators to build up a validation schema.

Expand All @@ -26,85 +26,116 @@ dependencies:
require "schema"
```

## Defining Self Validated Schemas
### Defining Self Validated Schemas

Schemas are defined as value objects, meaning structs, which are NOT mutable,
making them ideal to pass schema objects as arguments to constructors.

```crystal
class ExampleController
getter params : Hash(String, String)
class Example
include Schema::Definition
include Schema::Validation
def initialize(@params)
end
schema User do
param email : String, match: /\w+@\w+\.\w{2,3}/, message: "Email must be valid!"
param name : String, size: (1..20)
param age : Int32, gte: 24, lte: 25, message: "Must be 24 and 30 years old"
param alive : Bool, eq: true
param childrens : Array(String)
param childrens_ages : Array(Int32)
schema Address do
param street : String, size: (5..15)
param zip : String, match: /\d{5}/
param city : String, size: 2, in: %w[NY NJ CA UT]
schema Location do
param longitude : Float32
param latitute : Float32
end
property email : String
property name : String
property age : Int32
property alive : Bool
property childrens : Array(String)
property childrens_ages : Array(Int32)
property last_name : String
use EmailValidator, UniqueRecordValidator
validate :email, match: /\w+@\w+\.\w{2,3}/, message: "Email must be valid!"
validate :name, size: (1..20)
validate :age, gte: 18, lte: 25, message: "Age must be 18 and 25 years old"
validate :alive, eq: true
validate :last_name, presence: true, message: "Last name is invalid"
predicates do
def some?(value : String, some) : Bool
(!value.nil? && value != "") && !some.nil?
end
def some_method(arg)
...do something
def if?(value : Array(Int32), bool : Bool) : Bool
!bool
end
end
def initialize(@email, @name, @age, @alive, @childrens, @childrens_ages, @last_name)
end
end
```

### Schema class methods

```crystal
ExampleController::User.from_json(pyaload: String)
ExampleController::User.from_yaml(pyaload: String)
ExampleController::User.new(params: Hash(String, String))
Example.from_json
Example.from_urlencoded("&foo=bar")
# Any object that responds to `.each`, `#[]?`, `#[]`, `#fetch_all?`
Example.new(params)
```

### Schema instance methods

```crystal
getters - For each of the params
valid? - Bool
validate! - True or Raise Error
validate! - True or Raise ValidationError
errors - Errors(T, S)
rules - Rules(T, S)
params - Original params payload
to_json - Outputs JSON
to_yaml - Outputs YAML
```

## Example parsing HTTP Params (With nested params)
### Example parsing HTTP Params (With nested params)

Below find a list of the supported params parsing structure and it's corresponding representation in Query String or `application/x-www-form-urlencoded` form data.

```crystal
http_params = HTTP::Params.build do |p|
p.add("string", "string_value")
p.add("optional_string", "optional_string_value")
p.add("string_with_default", "string_with_default_value")
p.add("int", "1")
p.add("optional_int", "2")
p.add("int_with_default", "3")
p.add("enum", "Foo")
p.add("optional_enum", "Bar")
p.add("enum_with_default", "Baz")
p.add("array[]", "foo")
p.add("array[]", "bar")
p.add("array[]", "baz")
p.add("optional_array[]", "foo")
p.add("optional_array[]", "bar")
p.add("array_with_default[]", "foo")
p.add("hash[foo]", "1")
p.add("hash[bar]", "2")
p.add("optional_hash[foo][]", "3")
p.add("optional_hash[foo][]", "4")
p.add("optional_hash[bar][]", "5")
p.add("hash_with_default[foo]", "5")
p.add("tuple[]", "foo")
p.add("tuple[]", "2")
p.add("tuple[]", "3.5")
p.add("boolean", "1")
p.add("optional_boolean", "false")
p.add("boolean_with_default", "true")
p.add("nested[foo]", "1")
p.add("nested[bar]", "3")
p.add("nested[baz][]", "foo")
p.add("nested[baz][]", "bar")
end
```

```crystal
params = HTTP::Params.parse(
"[email protected]&name=john&age=24&alive=true&" +
"childrens=Child1,Child2&childrens_ages=1,2&" +
# Nested params
"address.city=NY&address.street=Sleepy Hollow&address.zip=12345&" +
"address.location.longitude=41.085651&address.location.latitute=-73.858467"
)
subject = ExampleController.new(params.to_h)
params = HTTP::Params.parse("email=test%40example.com&name=john&age=24&alive=true&childrens%5B%5D=Child1%2CChild2&childrens_ages%5B%5D=12&childrens_ages%5B%5D=18&address%5Bcity%5D=NY&address%5Bstreet%5D=Sleepy+Hollow&address%5Bzip%5D=12345&address%5Blocation%5D%5Blongitude%5D=41.085651&address%5Blocation%5D%5Blatitude%5D=-73.858467&address%5Blocation%5D%5Buseful%5D=true")
# HTTP::Params responds to `#[]`, `#[]?`, `#fetch_all?` and `.each`
subject = ExampleController.new(params)
```

Accessing the generated schemas:

```crystal
user = subject.user - ExampleController
address = user.address - ExampleController::Address
location = address.location - ExampleController::Address::Location
user = subject.user - Example
address = user.address - Example::Address
location = address.location - Example::Address::Location
```

## Example parsing from JSON
Expand All @@ -119,108 +150,72 @@ json = %({ "user": {
"childrens_ages": [9, 12]
}})
user = ExampleController.from_json(json, "user")
```

## Registring Schema Custom Converters

Custom converters allows you to define how to parse your custom data types. To Define a custom converter simply define a `convert` method for your custom type.

For example lets say we want to convert a `string` time representation to `Time` type.

```crystal
module Schema
module Cast(T)
def convert(asType : Time.class)
asType.parse(@value, "%m-%d-%Y", Time::Location::UTC)
end
end
end
```

or

```crystal
class CustomType
include Schema::Cast(CustomType)
def initialize(@value : String)
end
def value
convert(self.class)
end
def convert(asType : self.class)
@value.split(",").map { |i| i.to_i32 }
end
end
```

The implicit `@value` contains the actual string to parse as `Time`.

The definition of the `convert(asType : Time.class)` method registers the custome converter.

To use your converter simply define `param` with your custom type and the schema framework will do the rest.

```crystal
param ended_at : Time
user = Example.from_json(json, "user")
```

## Validations

You can also perform validations for existing objects without the use of Schemas.

```crystal
class User < Model
include Schema::Validation
property email : String
property name : String
property age : Int32
property alive : Bool
property childrens : Array(String)
property childrens_ages : Array(Int32)
validation do
# To use a custom validator, this will enable the predicate `unique_record`
# which is derived from the class name minus `validator`
use UniqueRecordValidator
# Use the `custom` class name predicate as follow
validate email, match: /\w+@\w+\.\w{2,3}/, message: "Email must be valid!", unique_record: true
validate name, size: (1..20)
validate age, gte: 18, lte: 25, message: "Must be 24 and 30 years old"
validate alive, eq: true
validate childrens
validate childrens_ages
end
# To use a custom validator. UniqueRecordValidator will be initialized with an `User` instance
use UniqueRecordValidator
# Use the `custom` class name predicate as follow
validate email, match: /\w+@\w+\.\w{2,3}/, message: "Email must be valid!", unique_record: true
validate name, size: (1..20)
validate age, gte: 18, lte: 25, message: "Must be 24 and 30 years old"
validate alive, eq: true
def initialize(@email, @name, @age, @alive, @childrens, @childrens_ages)
end
end
```

## Custom Validations
### Custom Validations

Simply create a class `{Name}Validator` with the following signature:

```crystal
class UniqueRecordValidator
getter :record, :message
class EmailValidator < Schema::Validator
getter :record, :field, :message
def initialize(@record : UserModel, @message : String)
def initialize(@record : UserModel)
@field = :email
@message = "Email must be valid!"
end
def valid?
false
def valid? : Array(Schema::Error)
[] of Schema::Error
end
end
```
Notice that `unique_record:` corresponds to `UniqueRecord`Validator.
class UniqueRecordValidator < Schema::Validator
getter :record, :field, :message
### Defining Your Own Predicates
def initialize(@record : UserModel)
@field = :email
@message = "Record must be unique!"
end
def valid? : Array(Schema::Error)
[] of Schema::Error
end
end
```

### Defining Predicates

You can define your custom predicates by simply creating a custom validator or creating methods in the `Schema::Validators` module ending with `?` and it should return a `boolean`. For example:
You can define your custom predicates by simply creating a custom validator or creating methods in the `Schema::Predicates` module ending with `?` and it should return a `boolean`. For example:

```crystal
class User < Model
Expand All @@ -231,14 +226,16 @@ class User < Model
property childrens : Array(String)
property childrens_ages : Array(Int32)
validation do
...
params password : String, presence: true
...
predicates do
def presence?(password : String, _other : String) : Bool
!value.nil?
end
# Uses a `presense` predicate
validate password : String, presence: true
# Use the `predicates` macro to define predicate methods
predicates do
# Presence Predicate Definition
def presence?(password : String, _other : String) : Bool
!value.nil?
end
end
Expand All @@ -247,15 +244,25 @@ class User < Model
end
```

### Differences: Custom Validator vs Predicates

The differences between a custom validator and a method predicate are:

- Custom validators receive an instance of the object as a `record` instance var.
- Custom validators allow for more control over validations.
- Predicates are assertions against the class properties (instance var).
- Predicates matches property value with predicate value.
**Custom Validators**
- Must be inherited from `Schema::Validator` abstract
- Receives an instance of the object as a `record` instance var.
- Must have a `:field` and `:message` defined.
- Must implement a `def valid? : Array(Schema::Error)` method.

**Predicates**
- Assertions of the property value against an expected value.
- Predicates are light weight boolean methods.
- Predicates methods must be defined as `def {predicate}?(property_value, expected_value) : Bool` .

### Built in Predicates

These are the current available predicates.

```crystal
gte - Greater Than or Equal To
lte - Less Than or Equal To
Expand All @@ -267,23 +274,15 @@ regex - Regular Expression
eq - Equal
```

> **CONTRIBUTE** - Add more predicates to this shards by contributing a Pull Request.
Additional params

```crystal
message - Error message to display
nilable - Allow nil, true or false
```

## Development (Help Wanted!)

API subject to change until marked as released version

Things left to do:

- [x] Validate nested - When calling `valid?` validates inner schemas.
- [x] Build nested yaml/json- Currently json and yaml do not support the sub schemas.
- [x] Document Custom Converter for custom types.

## Contributing

1. Fork it (<https://github.com/your-github-user/schemas/fork>)
Expand Down
Loading

0 comments on commit 1cffd0c

Please sign in to comment.