Skip to content

b4zz4/DIA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diffusion Image Analogies

DIA_Teaser This is the official repository for the Diffusion Image Analogies paper published at the SIGGRAPH 2023 Conference Proceedings.


Installation

  1. Clone the repo
    git clone --recurse-submodules https://github.com/subrtadel/DIA.git
    cd ./DIA
  2. Create environment
    conda create -n dia_env
    conda activate dia_env
    conda install python=3.8.5 pip=20.3 cudatoolkit=11.3 pytorch=1.11.0 torchvision=0.12.0 numpy=1.19.2 -c pytorch -c nvidia -c conda-forge -c defaults
    
  3. Install packages
    pip install -r requirements.txt
    cd ./stable-diffusion/
    pip install -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
    pip install -e .
  4. Download the sd-v1-4.ckpt model and put it into correct folder
    mkdir -p ./models/ldm/stable-diffusion-v1/
    
    
  5. Install Image Magick.

(back to top)


Usage

  1. Upload images into ./dataset/raw_data/ folder.

  1. Run process_new_data.py. The images are assigned file_ids in a %05d format.

  1. Define the triplets in a .csv file. Refer to the images by their file_id. Example file is triplets.csv. First column specifies the A input, second the A' and the third B input. Either with of without filename suffixes is fine.

  1. Run the precompute_noises_and_conditionings.py script. This may take a while.
    python precompute_noises_and_conditionings.py \
        --config ./config/parameter_estimation.yaml \
        --inversion_subfolder noise \
        --token_subfolder tokens \ 
        --triplet_file triplets.csv \
        --data_path ./dataset/data/

  1. Check the ./config/analogy_params.yaml.

  1. Run the do_analogies.py script.
    python do_analogies.py \
        --config ./config/parameter_estimation.yaml \
        --inversion_subfolder noise \
        --token_subfolder tokens \ 
        --output_subfolder analogies \
        --triplet_file triplets.csv \
        --data_path ./dataset/data/

BibTeX

@inproceedings{Subrtova2023DIA,
    title = {Diffusion Image Analogies},
    author = {A. \v{S}ubrtov\'{a} and M. Luk\'{a}\v{c} and J. \v{C}ech and D. Futschik and E. Shechtman  and D. S\'{y}kora},
    booktitle = {ACM SIGGRAPH 2023 Conference Proceedings},
    year = {2023}
  }

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 85.8%
  • Jupyter Notebook 14.2%