Skip to content

bartomolina/dscurriculum

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Flatiron Data Science Bootcamp - Curriculum

M1: Exploratory Data Analysis and Descriptive Statistics (Python for Data Science)

  • M1S1: Getting Started with Data Science
  • M1S2: Importing and Statistical Analysis of Data
  • M1S3: Working with Pandas
  • M1S4: Data Cleaning in Pandas
  • M1S5: SQL and Relational Databases
  • M1S6: Object Oriented Programming
  • M1S7: OOP Continued
  • M1S8: Numpy and Foundations of Probability and Combinatorics
  • M1S9: Statistical Distributions
  • M1S10: Introduction to Linear Regression
  • M1S11: Multiple Regression and Model Validation
  • M1S12: A Complete Data Science Project Using Multiple Regression

M2: Data Engineering for Data Science

  • M2S11: JSON and XML
  • M2S12: Accessing Data through APIs
  • M2S13: HTML, CSS and Web Scraping
  • M2S15: Other Database structures
  • M2S16: Scraping and Storing your Data

M3: Probability, Sampling and AB Testing

  • M3S17: Combinatorics and Probability
  • M3S18: Statistical Distributions
  • M3S19: Central Limit Theorem and Confidence Intervals

M4: Statistical Modelling

  • M5S37: Principal Component Analysis

M5: Machine Learning and Big Data

  • M4S31: Working with Time Series Data
  • M4S32: Time Series Modelling

Jupyter Notebook cheatsheet

  • shift enter: run cell, select below
  • ctrl enter: run cell
  • alt enter: run cell, insert below
  • a: new cell above
  • b: new cell below
  • x: delete cell
  • z: undo delete cell
  • y: code cell
  • m: markdown cell
  • h: view shortcuts
  • ctrl /: comment lines

Git cheatsheet

  • git clone URL
  • git commit -m MESSAGE
  • git push
  • git log

About

Flatiron Data Science Bootcamp - Curriculum

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published