-
Notifications
You must be signed in to change notification settings - Fork 15
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
183 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
|
||
|
||
!C NUMERICAL METHODS: FORTRAN Programs, (c) John H. Mathews 1994 | ||
!C To accompany the text: | ||
!C NUMERICAL METHODS for Mathematics, Science and Engineering, 2nd Ed, 1992 | ||
!C Prentice Hall, Englewood Cliffs, New Jersey, 07632, U.S.A. | ||
!C This free software is complements of the author. | ||
!C | ||
!C Algorithm 6.1 (Differentiation Using Limits). | ||
!C Section 6.1, Approximating the Derivative, Page 326 | ||
|
||
SUBROUTINE DLIMIT(F,D,DX,E,X,H,M,Tol) | ||
PARAMETER(Max=100) | ||
INTEGER M,N | ||
REAL D,DX,E,H,R,X | ||
DIMENSION D(0:Max),DX(0:Max),E(0:Max),R(0:Max) | ||
CHARACTER ANS*1 | ||
EXTERNAL F | ||
Small=1E-9 | ||
H = 1 | ||
DX(0) = H | ||
D(0) = 0.5*(F(X+H)-F(X-H))/H | ||
DO N=1,2 | ||
H = H/2 | ||
DX(N) = H | ||
D(N) = 0.5*(F(X+H)-F(X-H))/H | ||
E(N) = ABS(D(N)-D(N-1)) | ||
R(N) = 2*E(N)/(ABS(D(N))+ABS(D(N-1))+Small) | ||
ENDDO | ||
N = 1 | ||
WHILE ((E(N).GT.E(N+1) .OR. R(N).GT.Tol).AND.(N.LT.Max)) | ||
H = H/2 | ||
DX(N+2) = H | ||
D(N+2) = 0.5*(F(X+H)-F(X-H))/H | ||
E(N+2) = ABS(D(N+2)-D(N+1)) | ||
R(N+2) = 2*E(N+2)/(ABS(D(N+2))+ABS(D(N+1))+Small) | ||
N = N+1 | ||
REPEAT | ||
M=N | ||
RETURN | ||
END | ||
|
||
SUBROUTINE XLIMIT(F,D,DX,E,X,H,M,Tol) | ||
!C This subroutine uses labeled DO loop(s). | ||
PARAMETER(Max=100) | ||
INTEGER M,N | ||
REAL D,DX,E,H,R,X | ||
DIMENSION D(0:Max),DX(0:Max),E(0:Max),R(0:Max) | ||
CHARACTER ANS*1 | ||
EXTERNAL F | ||
Small=1E-9 | ||
H = 1 | ||
DX(0) = H | ||
D(0) = 0.5*(F(X+H)-F(X-H))/H | ||
DO 10 N=1,2 | ||
H = H/2 | ||
DX(N) = H | ||
D(N) = 0.5*(F(X+H)-F(X-H))/H | ||
E(N) = ABS(D(N)-D(N-1)) | ||
R(N) = 2*E(N)/(ABS(D(N))+ABS(D(N-1))+Small) | ||
10 CONTINUE | ||
N = 1 | ||
20 IF ((E(N).GT.E(N+1) .OR. R(N).GT.Tol).AND.(N.LT.Max)) THEN | ||
H = H/2 | ||
DX(N+2) = H | ||
D(N+2) = 0.5*(F(X+H)-F(X-H))/H | ||
E(N+2) = ABS(D(N+2)-D(N+1)) | ||
R(N+2) = 2*E(N+2)/(ABS(D(N+2))+ABS(D(N+1))+Small) | ||
N = N+1 | ||
GOTO 20 | ||
ENDIF | ||
M=N | ||
RETURN | ||
END | ||
|
||
|
||
SUBROUTINE EXTRAP(F,D,DX,X,H,Error,N,Tol,Delta) | ||
PARAMETER(MaxN=15) | ||
INTEGER J,K,N | ||
REAL D,DX,Error,H,RelErr,Small,X | ||
DIMENSION D(0:MaxN,0:MaxN),DX(0:MaxN) | ||
EXTERNAL F | ||
Small=1E-7 | ||
H=1 | ||
DX(0) = H | ||
J=1 | ||
Error=1 | ||
RelErr=1 | ||
D(0,0)=0.5*(F(X+H)-F(X-H))/H | ||
WHILE ( RelErr.GT.Tol .AND. Error.GT.Delta .AND. J.LT.16) | ||
H=H/2 | ||
DX(J) = H | ||
D(J,0)=0.5*(F(X+H)-F(X-H))/H | ||
DO K=1,J | ||
D(J,K)=D(J,K-1)+(D(J,K-1)-D(J-1,K-1))/(4**K-1) | ||
ENDDO | ||
Error=ABS(D(J,J)-D(J-1,J-1)) | ||
RelErr=2*Error/(ABS(D(J,J))+ABS(D(J-1,J-1))+Small) | ||
N=J | ||
J=J+1 | ||
REPEAT | ||
RETURN | ||
END | ||
|
||
SUBROUTINE XEXTRAP(F,D,DX,X,H,Error,N,Tol,Delta) | ||
!C This subroutine uses simulated WHILE loop(s). | ||
PARAMETER(MaxN=15) | ||
INTEGER J,K,N | ||
REAL D,DX,Error,H,RelErr,Small,X | ||
DIMENSION D(0:MaxN,0:MaxN),DX(0:MaxN) | ||
EXTERNAL F | ||
Small=1E-7 | ||
H=1 | ||
DX(0) = H | ||
J=1 | ||
Error=1 | ||
RelErr=1 | ||
D(0,0)=0.5*(F(X+H)-F(X-H))/H | ||
10 IF ( RelErr.GT.Tol .AND. Error.GT.Delta .AND. J.LT.16) THEN | ||
H=H/2 | ||
DX(J) = H | ||
D(J,0)=0.5*(F(X+H)-F(X-H))/H | ||
DO 20 K=1,J | ||
D(J,K)=D(J,K-1)+(D(J,K-1)-D(J-1,K-1))/(4**K-1) | ||
20 CONTINUE | ||
Error=ABS(D(J,J)-D(J-1,J-1)) | ||
RelErr=2*Error/(ABS(D(J,J))+ABS(D(J-1,J-1))+Small) | ||
N=J | ||
J=J+1 | ||
GOTO 10 | ||
ENDIF | ||
RETURN | ||
END | ||
|
||
|
||
SUBROUTINE DIFPOLY(A,X,Y,N,Df) | ||
PARAMETER(MaxN=15) | ||
INTEGER J,K,N | ||
REAL A,Df,Prod,T,X,Y | ||
DIMENSION A(0:MaxN),X(0:MaxN),Y(0:MaxN) | ||
DO K=0,N | ||
A(K)=Y(K) | ||
ENDDO | ||
DO J=1,N | ||
DO K=N,J,-1 | ||
A(K)=(A(K)-A(K-1))/(X(K)-X(K-J)) | ||
ENDDO | ||
ENDDO | ||
T=X(0) | ||
Df=A(1) | ||
Prod=1 | ||
DO K=2,N | ||
Prod=Prod*(T-X(K-1)) | ||
Df=Df+Prod*A(K) | ||
ENDDO | ||
RETURN | ||
END | ||
|
||
SUBROUTINE XDIFPOLY(A,X,Y,N,Df) | ||
!C This subroutine uses labeled DO loop(s). | ||
PARAMETER(MaxN=15) | ||
INTEGER J,K,N | ||
REAL A,Df,Prod,T,X,Y | ||
DIMENSION A(0:MaxN),X(0:MaxN),Y(0:MaxN) | ||
DO 10 K=0,N | ||
A(K)=Y(K) | ||
10 CONTINUE | ||
DO 30 J=1,N | ||
DO 20 K=N,J,-1 | ||
A(K)=(A(K)-A(K-1))/(X(K)-X(K-J)) | ||
20 CONTINUE | ||
30 CONTINUE | ||
T=X(0) | ||
Df=A(1) | ||
Prod=1 | ||
DO 40 K=2,N | ||
Prod=Prod*(T-X(K-1)) | ||
Df=Df+Prod*A(K) | ||
40 CONTINUE | ||
RETURN | ||
END | ||
|
||
|