Skip to content

bhiziroglu/Co-Training-Images

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Co-Training Images

Implementation of the paper Combining Labeled and Unlabeled Data with Co-Training for images.

Introduction

Co-Training is a machine-learning algorithm that is proposed by Blum and Mitchell [1]. It can be used when a small portion of a dataset is labeled. The original work used the Co-Training algorithm for classifying web-pages. This project considers the problem of image classification on CIFAR-10 dataset using Co-Training.

Usage

Clone the repository and run the main python file.

$ python main.py

Co-Training Algorithm

Alt text

Above figure is taken from the original paper [1]. This project uses the same algorithm.

Experiment Results

Parameters used for Experiment 1
Initial labeled dataset size: 4000
Pool size: 1000
Positive/Negative Examples: 100

Alt text

Parameters used for Experiment 2
Initial labeled dataset size: 12000
Pool size: 1000
Positive/Negative Examples: 100

Alt text

Parameters used for Experiment 3
Initial labeled dataset size: 40000
Pool size: 1000
Positive/Negative Examples: 100

Alt text

Notes

The performance of this model, like any other semi-supervised learning algorithm, is not generally very stable because the unlabeled examples may be wrongly labeled during the training process.

References

[1] Avrim Blum and Tom Mitchell. 1998. Combining labeled and unlabeled data with co-training. In Proceedings of the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pages 92–100, New York, NY, USA. ACM. https://www.cs.cmu.edu/~avrim/Papers/cotrain.pdf

About

Co-Training for Image Classification

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages