-
Notifications
You must be signed in to change notification settings - Fork 53
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
e7646b3
commit 8c6ee4e
Showing
2 changed files
with
27 additions
and
35 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,41 +1,31 @@ | ||
# coding: utf-8 | ||
# 2021/4/6 @ WangFei | ||
# 2023/11/17 @ WangFei | ||
|
||
import random | ||
import pytest | ||
import torch | ||
import numpy as np | ||
from torch.utils.data import TensorDataset, DataLoader | ||
import pandas as pd | ||
import random | ||
|
||
|
||
@pytest.fixture(scope="package") | ||
def conf(): | ||
user_num = 5 | ||
item_num = 2 | ||
knowledge_num = 4 | ||
return user_num, item_num, knowledge_num | ||
def meta(): | ||
meta_data = {'userId': ['001', '002', '003'], 'itemId': ['adf', 'w5'], 'skill': ['skill1', 'skill2', 'skill3', 'skill4']} | ||
return meta_data | ||
|
||
|
||
@pytest.fixture(scope="package") | ||
def data(conf): | ||
user_num, item_num, knowledge_num = conf | ||
knowledge_embs = np.zeros((item_num, knowledge_num)) | ||
for i in range(item_num): | ||
for j in range(knowledge_num): | ||
knowledge_embs[i][j] = random.randint(0, 1) | ||
log = [] | ||
for i in range(user_num): | ||
for j in range(item_num): | ||
score = random.randint(0, 1) | ||
log.append((i, j, knowledge_embs[j], score)) | ||
|
||
user_id, item_id, knowledge_emb, score = zip(*log) | ||
batch_size = 4 | ||
meta_data = meta | ||
item_skills = [] | ||
skll_n = len(meta_data['skill']) | ||
for itemid in meta_data['itemId']: | ||
item_skills.append(meta['skill'][random.randint(0, skll_n - 1)]) | ||
userIds, itemIds, skills, responses = [] | ||
for user in meta_data['userId']: | ||
for i, item in enumerate(meta_data['itemId']): | ||
userIds.append(user) | ||
itemIds.append(item) | ||
skills.append(item_skills[i]) | ||
responses.append(random.randint(0, 1)) | ||
|
||
dataset = TensorDataset( | ||
torch.tensor(user_id, dtype=torch.int64), | ||
torch.tensor(item_id, dtype=torch.int64), | ||
torch.tensor(knowledge_emb, dtype=torch.int64), | ||
torch.tensor(score, dtype=torch.float) | ||
) | ||
return DataLoader(dataset, batch_size=batch_size) | ||
df_data = pd.DataFrame({'userId': userIds, 'itemId': itemIds, 'skill': skills, 'response': responses}) | ||
return df_data |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,12 +1,14 @@ | ||
# coding: utf-8 | ||
# 2021/4/6 @ WangFei | ||
# 2023/11/17 @ WangFei | ||
from EduCDM import NCDM | ||
|
||
|
||
def test_train(data, conf, tmp_path): | ||
user_num, item_num, knowledge_num = conf | ||
cdm = NCDM(knowledge_num, item_num, user_num) | ||
cdm.train(data, test_data=data, epoch=2) | ||
def test_train(data, meta, tmp_path): | ||
df_data = data | ||
meta_data = meta | ||
cdm = NCDM(meta_data) | ||
cdm.fit(train_data=df_data, epoch=2, val_data=df_data) | ||
filepath = tmp_path / "mcd.params" | ||
cdm.save(filepath) | ||
cdm.load(filepath) | ||
cdm.eval(df_data) |