We have added all the baseline models‘ results and codes to our GitHub page, including ST-GRAT, GMAN, AST-GAT, DCRNN, T-GCN, Etc! Note, we have not added the ST-GRAT and DCRNN results to our paper because the prediction precisions of DCRNN and ST-GRAT (implemented by PyTorch, torch==1.6.0) are further lower than GMAN, but we have gave the results on the dataset as the following shows. If you need, we will add both results to this paper!!! Our task is using the 6 historical time steps to prediction the future 6 target time steps traffic speed of highway, and our time granularity is 15 minutes. If you have any questions, don't hesitate to connect us, thanks!
需要注意的是,需要根据requirements.txt文件中指示的包进行安装,才能正常的运行程序!!!
- 首先,使用conda创建一个虚拟环境,如‘conda create traffic_speed’;
- 激活环境,conda activate traffic_speed;
- 安装环境,需要安装的环境已经添加在requirements.txt中,可以用conda安装,也可以使用pip安装,如:conda install tensorflow==1.12.0;
- 如果安装的是最新的tensorflow环境,也没问题,tensorflow的包按照以下方式进行导入即可:import tensorflow.compat.v1 as tf tf.disable_v2_behavior();
- 点击 run_train.py文件即可运行代码。
- 需要注意的是,我们在tensorflow的1.12和1.14版本环境中都可以运行
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 6.185242 | 6.185242 | 6.185242 | 6.185242 | 6.185242 | 6.185242 |
RMSE | 10.139710 | 10.139710 | 10.139710 | 10.139710 | 10.139710 | 10.139710 |
MAPE | 0.126192 | 0.126192 | 0.126192 | 0.126192 | 0.126192 | 0.126192 |
R | 0.941854 | 0.941854 | 0.941854 | 0.941854 | 0.941854 | 0.941854 |
R2 | 0.886221 | 0.886221 | 0.886221 | 0.886221 | 0.886221 | 0.886221 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.883667 | 6.046000 | 6.104512 | 6.374540 | 6.360256 | 6.168883 |
RMSE | 9.429440 | 9.798609 | 9.769539 | 10.209594 | 10.030069 | 9.769304 |
MAPE | 0.102238 | 0.159162 | 0.130914 | 0.110670 | 0.129478 | 0.131120 |
R | 0.941224 | 0.937721 | 0.937789 | 0.930736 | 0.933817 | 0.937160 |
R2 | 0.885876 | 0.879284 | 0.879403 | 0.866113 | 0.871992 | 0.878266 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.622419 | 5.694858 | 5.636928 | 5.902129 | 5.898720 | 5.929169 |
RMSE | 9.541193 | 9.459830 | 9.366811 | 9.714313 | 9.744125 | 9.761787 |
MAPE | 0.111848 | 0.114599 | 0.126784 | 0.138657 | 0.142691 | 0.127152 |
R | 0.948368 | 0.949696 | 0.950375 | 0.947028 | 0.946775 | 0.946549 |
R2 | 0.898497 | 0.901055 | 0.902324 | 0.895883 | 0.895211 | 0.894915 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.517776 | 5.632012 | 5.777946 | 5.946635 | 6.041769 | 6.079495 |
RMSE | 9.125115 | 9.284576 | 9.433199 | 9.641906 | 9.626469 | 9.586535 |
MAPE | 0.133428 | 0.140966 | 0.126444 | 0.119835 | 0.122028 | 0.134512 |
R | 0.952999 | 0.951341 | 0.949730 | 0.946881 | 0.947458 | 0.947507 |
R2 | 0.908157 | 0.904874 | 0.901881 | 0.896313 | 0.897537 | 0.897657 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.524607 | 5.632932 | 5.771882 | 5.954062 | 6.055177 | 6.096319 |
RMSE | 9.129195 | 9.285857 | 9.423597 | 9.640355 | 9.636107 | 9.591586 |
MAPE | 0.132028 | 0.140429 | 0.127086 | 0.122740 | 0.127745 | 0.141035 |
R | 0.953077 | 0.951397 | 0.949857 | 0.946916 | 0.947363 | 0.947457 |
R2 | 0.908075 | 0.904848 | 0.902081 | 0.896346 | 0.897331 | 0.897549 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.520539 | 5.626097 | 5.768340 | 5.932466 | 6.028442 | 6.048296 |
RMSE | 9.116093 | 9.267610 | 9.432268 | 9.622239 | 9.603523 | 9.569430 |
MAPE | 0.137907 | 0.144544 | 0.130363 | 0.123199 | 0.129686 | 0.140039 |
R | 0.953136 | 0.951567 | 0.949828 | 0.947121 | 0.947781 | 0.947735 |
R2 | 0.908339 | 0.905221 | 0.901901 | 0.896736 | 0.898025 | 0.898022 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.386255 | 5.468801 | 5.567571 | 5.716054 | 5.768782 | 5.749586 |
RMSE | 8.880815 | 9.022358 | 9.145341 | 9.307195 | 9.271415 | 9.167632 |
MAPE | 0.130217 | 0.135699 | 0.120082 | 0.114041 | 0.116743 | 0.128589 |
R | 0.955524 | 0.954207 | 0.952829 | 0.950642 | 0.951668 | 0.952150 |
R2 | 0.913009 | 0.910171 | 0.907778 | 0.903387 | 0.904956 | 0.906406 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.429035 | 5.509909 | 5.627575 | 5.784230 | 5.813673 | 5.804645 |
RMSE | 8.916788 | 9.076988 | 9.176666 | 9.381263 | 9.304234 | 9.256170 |
MAPE | 0.130555 | 0.134097 | 0.120055 | 0.115990 | 0.117240 | 0.129795 |
R | 0.955434 | 0.953698 | 0.952556 | 0.949963 | 0.951238 | 0.951537 |
R2 | 0.912303 | 0.909080 | 0.907145 | 0.901843 | 0.904282 | 0.904590 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.670292 | 5.675068 | 5.746703 | 5.863256 | 5.888195 | 5.831183 |
RMSE | 9.134161 | 9.173527 | 9.245162 | 9.387154 | 9.317363 | 9.195807 |
MAPE | 0.138232 | 0.141509 | 0.124293 | 0.118078 | 0.119514 | 0.132048 |
R | 0.953061 | 0.952621 | 0.951832 | 0.949719 | 0.950864 | 0.951782 |
R2 | 0.907975 | 0.907136 | 0.905754 | 0.901720 | 0.904011 | 0.905830 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.808297 | 5.788443 | 5.794671 | 5.819892 | 5.836586 | 5.867232 |
RMSE | 9.389112 | 9.371624 | 9.375622 | 9.404970 | 9.420036 | 9.460167 |
MAPE | 0.137371 | 0.133297 | 0.133757 | 0.134122 | 0.133960 | 0.135183 |
R | 0.950188 | 0.950462 | 0.950404 | 0.950128 | 0.949942 | 0.949522 |
R2 | 0.902386 | 0.902738 | 0.902651 | 0.902037 | 0.901720 | 0.900876 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.248924 | 5.258951 | 5.329265 | 5.428566 | 5.421416 | 5.314834 |
RMSE | 8.705578 | 8.784430 | 8.828416 | 8.943468 | 8.809244 | 8.712925 |
MAPE | 0.124102 | 0.128212 | 0.114900 | 0.110572 | 0.110653 | 0.121733 |
R | 0.957302 | 0.956514 | 0.956069 | 0.954439 | 0.956152 | 0.956983 |
R2 | 0.916408 | 0.914847 | 0.914059 | 0.910791 | 0.914195 | 0.915460 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.233438 | 5.208744 | 5.256062 | 5.329036 | 5.347667 | 5.204790 |
RMSE | 8.730351 | 8.795372 | 8.797104 | 8.908348 | 8.818618 | 8.598270 |
MAPE | 0.130036 | 0.131432 | 0.116220 | 0.107743 | 0.111887 | 0.117915 |
R | 0.957150 | 0.956506 | 0.956505 | 0.954913 | 0.956238 | 0.958076 |
R2 | 0.915932 | 0.914634 | 0.914668 | 0.911490 | 0.914013 | 0.917670 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.234585 | 5.178617 | 5.211098 | 5.287373 | 5.322027 | 5.223792 |
RMSE | 8.734820 | 8.744925 | 8.779705 | 8.879185 | 8.817018 | 8.640688 |
MAPE | 0.130630 | 0.128092 | 0.114170 | 0.106051 | 0.110179 | 0.120951 |
R | 0.957045 | 0.956970 | 0.956621 | 0.955153 | 0.956184 | 0.957628 |
R2 | 0.915846 | 0.915611 | 0.915005 | 0.912069 | 0.914044 | 0.916856 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.126567 | 5.224280 | 5.335337 | 5.456082 | 5.562169 | 5.662242 |
RMSE | 8.719842 | 8.848616 | 8.980233 | 9.120206 | 9.243639 | 9.359533 |
MAPE | 0.117111 | 0.119548 | 9.243639 | 0.124147 | 0.126001 | 0.127665 |
R | 0.957088 | 0.956256 | 0.126001 | 0.954598 | 0.953828 | 0.953095 |
R2 | 0.915784 | 0.913271 | 0.910662 | 0.907852 | 0.905335 | 0.902939 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.175827 | 5.100160 | 5.149714 | 5.222380 | 5.245451 | 5.150738 |
RMSE | 8.644908 | 8.640150 | 8.701153 | 8.819650 | 8.724352 | 8.527315 |
MAPE | 0.126175 | 0.127834 | 0.112100 | 0.104818 | 0.108805 | 0.117945 |
R | 0.957921 | 0.957968 | 0.957378 | 0.955765 | 0.957101 | 0.958707 |
R2 | 0.917550 | 0.917624 | 0.916518 | 0.913230 | 0.915819 | 0.919006 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.177275 | 5.109780 | 5.187932 | 5.239958 | 5.257546 | 5.156742 |
RMSE | 8.631874 | 8.640737 | 8.729155 | 8.806985 | 8.720966 | 8.515376 |
MAPE | 0.132412 | 0.131180 | 0.117357 | 0.109338 | 0.113217 | 0.120528 |
R | 0.958046 | 0.957964 | 0.957082 | 0.955788 | 0.957056 | 0.958787 |
R2 | 0.917799 | 0.917613 | 0.915979 | 0.913479 | 0.915884 | 0.919233 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.195487 | 5.116568 | 5.174414 | 5.246917 | 5.274146 | 5.178238 |
RMSE | 8.718395 | 8.693000 | 8.744741 | 8.864868 | 8.775015 | 8.614857 |
MAPE | 0.127035 | 0.129896 | 0.113813 | 0.105365 | 0.108400 | 0.119232 |
R | 0.957350 | 0.957625 | 0.957099 | 0.955481 | 0.956771 | 0.958061 |
R2 | 0.916143 | 0.916614 | 0.915679 | 0.912338 | 0.914838 | 0.917335 |
评价指标 | 6-1 steps | 6-2 steps | 6-3 steps | 6-4 steps | 6-5 steps | 6-6 steps |
---|---|---|---|---|---|---|
MAE | 5.182895 | 5.167289 | 5.197474 | 5.254837 | 5.308890 | 5.164660 |
RMSE | 8.666809 | 8.727748 | 8.737943 | 8.846064 | 8.761161 | 8.555215 |
MAPE | 0.126229 | 0.129717 | 0.114406 | 0.107089 | 0.108753 | 0.117827 |
R | 0.957731 | 0.957168 | 0.957062 | 0.955487 | 0.956708 | 0.958486 |
R2 | 0.917151 | 0.915942 | 0.915812 | 0.912723 | 0.915129 | 0.918493 |
-
新版STGIN映射到STGIN_4权重weights/参数上,以此类推,STGIN_3映射到STGIN_7权重weights/参数上,
# Blocks for i in range(self.num_blocks): with tf.variable_scope("num_blocks_{}".format(i)): # Multihead Attention X_Q = multihead_attention(queries=X_Q, # future time steps keys=X_P, # historical time steps values= X, # historical inputs num_units=self.hidden_units, num_heads= self.num_heads, # self.num_heads dropout_rate=self.dropout_rate, is_training=self.is_training) # Feed Forward X_Q = feedforward(X_Q, num_units=[4 * self.hidden_units, self.hidden_units]) X = tf.reshape(X_Q,shape=[-1, self.site_num, self.output_length, self.hidden_units])