-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: added handler, deps and prompt
- Loading branch information
1 parent
22b07be
commit d341ba3
Showing
3 changed files
with
166 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -17,4 +17,5 @@ timm | |
sentencepiece | ||
transformers | ||
diffusers | ||
accelerate | ||
accelerate | ||
IPython |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
{ | ||
"input": { | ||
"prompt": "monster illustration in south park style of a diverse family of 7 monsters", | ||
"num_inference_steps": 20, | ||
"video_num_inference_steps": 10, | ||
"width": 1280, | ||
"height": 768, | ||
"temp": 16, | ||
"guidance_scale": 9.0, | ||
"video_guidance_scale": 5.0, | ||
"seed": 919283891289, | ||
"fps": 24 | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,13 +1,153 @@ | ||
''' A template for a handler file. ''' | ||
import os, random, time, runpod, requests, string, hashlib, mimetypes, sys | ||
import logging | ||
|
||
import runpod | ||
import torch | ||
from PIL import Image | ||
|
||
def handler(job): | ||
''' | ||
This is the handler function for the job. | ||
''' | ||
job_input = job['input'] | ||
name = job_input.get('name', 'World') | ||
return f"Hello, {name}!" | ||
# Adding the correct path for Pyramid-Flow | ||
sys.path.append("/content/Pyramid-Flow") | ||
|
||
runpod.serverless.start({"handler": handler}) | ||
from pyramid_dit import PyramidDiTForVideoGeneration | ||
from diffusers.utils import export_to_video | ||
|
||
# Set the UploadThing API key from environment variables | ||
UPLOADTHING_API_KEY = os.getenv("UPLOADTHING_API_KEY") | ||
|
||
model_dtype, torch_dtype = "bf16", torch.bfloat16 | ||
logging.basicConfig(level=logging.INFO) | ||
|
||
model = PyramidDiTForVideoGeneration( | ||
"/content/model", | ||
model_dtype, | ||
model_variant="diffusion_transformer_768p", | ||
) | ||
logging.info(f"Model loaded successfully from /content/model") | ||
|
||
model.vae.to("cuda") | ||
model.dit.to("cuda") | ||
model.text_encoder.to("cuda") | ||
model.vae.enable_tiling() | ||
|
||
video_path = "/content/pyramid-flow-t2v.mp4" | ||
|
||
|
||
def upload_file_to_uploadthing(file_path): | ||
"""Uploads a file to UploadThing using a pre-signed URL.""" | ||
file_name = os.path.basename(file_path) | ||
_, file_extension = os.path.splitext(file_name) | ||
|
||
# Generate random string for file name | ||
random_string = "".join( | ||
random.choice(string.ascii_letters + string.digits) for _ in range(8) | ||
) | ||
md5_hash = hashlib.md5(random_string.encode()).hexdigest() | ||
file_name = md5_hash + file_extension | ||
file_size = os.path.getsize(file_path) | ||
file_type, _ = mimetypes.guess_type(file_path) | ||
|
||
# Read file content | ||
with open(file_path, "rb") as file: | ||
file_content = file.read() | ||
|
||
# File info | ||
file_info = {"name": file_name, "size": file_size, "type": file_type} | ||
|
||
# Get presigned URL from UploadThing | ||
headers = {"x-uploadthing-api-key": UPLOADTHING_API_KEY} | ||
data = {"contentDisposition": "inline", "acl": "public-read", "files": [file_info]} | ||
presigned_response = requests.post( | ||
"https://api.uploadthing.com/v6/uploadFiles", headers=headers, json=data | ||
) | ||
presigned_response.raise_for_status() | ||
|
||
# Upload file using the presigned URL | ||
presigned = presigned_response.json()["data"][0] | ||
upload_url = presigned["url"] | ||
fields = presigned["fields"] | ||
files = {"file": file_content} | ||
upload_response = requests.post(upload_url, data=fields, files=files) | ||
upload_response.raise_for_status() | ||
|
||
# Return the file URL | ||
file_url = presigned["fileUrl"] | ||
return file_url | ||
|
||
|
||
# Add this function to list directory contents | ||
def list_directory_contents(path): | ||
contents = [] | ||
for root, dirs, files in os.walk(path): | ||
for name in files: | ||
contents.append(os.path.join(root, name)) | ||
for name in dirs: | ||
contents.append(os.path.join(root, name) + "/") | ||
return contents | ||
|
||
|
||
@torch.inference_mode() | ||
def generate(input): | ||
try: | ||
# List the contents of the /content/model directory | ||
model_contents = list_directory_contents("/content/model") | ||
print("Contents of /content/model:") | ||
for item in model_contents: | ||
print(item) | ||
|
||
values = input["input"] | ||
|
||
prompt = values["prompt"] | ||
num_inference_steps = values["num_inference_steps"] | ||
video_num_inference_steps = values["video_num_inference_steps"] | ||
width = values["width"] | ||
height = values["height"] | ||
temp = values["temp"] | ||
guidance_scale = values["guidance_scale"] | ||
video_guidance_scale = values["video_guidance_scale"] | ||
seed = values["seed"] | ||
fps = values["fps"] | ||
|
||
if seed == 0: | ||
random.seed(int(time.time())) | ||
seed = random.randint(0, 18446744073709551615) | ||
torch.manual_seed(seed) | ||
|
||
with torch.no_grad(), torch.cuda.amp.autocast(enabled=True, dtype=torch_dtype): | ||
frames = model.generate( | ||
prompt=prompt, | ||
num_inference_steps=[ | ||
num_inference_steps, | ||
num_inference_steps, | ||
num_inference_steps, | ||
], | ||
video_num_inference_steps=[ | ||
video_num_inference_steps, | ||
video_num_inference_steps, | ||
video_num_inference_steps, | ||
], | ||
height=height, | ||
width=width, | ||
temp=temp, # temp=16: 5s, temp=31: 10s | ||
guidance_scale=guidance_scale, # The guidance for the first frame | ||
video_guidance_scale=video_guidance_scale, # The guidance for the other video latent | ||
output_type="pil", | ||
save_memory=False, | ||
) | ||
|
||
export_to_video(frames, video_path, fps=fps) | ||
|
||
# Upload the video to UploadThing | ||
video_url = upload_file_to_uploadthing(video_path) | ||
|
||
return { | ||
"video": video_url, | ||
"status": "DONE", | ||
} | ||
|
||
except Exception as e: | ||
return {"video": f"FAILED: {str(e)}", "status": "FAILED"} | ||
finally: | ||
if os.path.exists(video_path): | ||
os.remove(video_path) | ||
|
||
|
||
runpod.serverless.start({"handler": generate}) |