Skip to content

Commit

Permalink
Merge pull request #11 from boettiger-lab/first-results
Browse files Browse the repository at this point in the history
First results
  • Loading branch information
cboettig authored Jun 7, 2024
2 parents bb69f3b + 664965f commit 6ccf3a8
Show file tree
Hide file tree
Showing 48 changed files with 29,706 additions and 9,425 deletions.
7 changes: 7 additions & 0 deletions hyperpars/for_results/fixed_policy_UM1.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
config:
upow: 1
harvest_fn_name: "default"
n_eval_episodes: 250
n_calls: 70
id: "UM1"
repo_id: "boettiger-lab/rl4eco"
7 changes: 7 additions & 0 deletions hyperpars/for_results/fixed_policy_UM2.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
config:
upow: 0.6
harvest_fn_name: "default"
n_eval_episodes: 250
n_calls: 70
id: "UM2"
repo_id: "boettiger-lab/rl4eco"
8 changes: 8 additions & 0 deletions hyperpars/for_results/fixed_policy_UM3.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
config:
upow: 1
harvest_fn_name: "trophy"
n_trophy_ages: 10
n_eval_episodes: 250
n_calls: 70
id: "UM3"
repo_id: "boettiger-lab/rl4eco"
41 changes: 41 additions & 0 deletions hyperpars/for_results/ppo_biomass_UM1.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_1o'
n_observs: 1
#
harvest_fn_name: "default"
upow: 1
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "biomass-UM1-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
41 changes: 41 additions & 0 deletions hyperpars/for_results/ppo_biomass_UM2.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_1o'
n_observs: 1
#
harvest_fn_name: "default"
upow: 0.6
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "biomass-UM2-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
42 changes: 42 additions & 0 deletions hyperpars/for_results/ppo_biomass_UM3.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_1o'
n_observs: 1
#
harvest_fn_name: "trophy"
n_trophy_ages: 10
upow: 1
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "biomass-UM3-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
41 changes: 41 additions & 0 deletions hyperpars/for_results/ppo_both_UM1.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_2o'
n_observs: 2
#
harvest_fn_name: "default"
upow: 1
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "2obs-UM1-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
41 changes: 41 additions & 0 deletions hyperpars/for_results/ppo_both_UM2.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_2o'
n_observs: 2
#
harvest_fn_name: "default"
upow: 0.6
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "2obs-UM2-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
42 changes: 42 additions & 0 deletions hyperpars/for_results/ppo_both_UM3.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_2o'
n_observs: 2
#
harvest_fn_name: "trophy"
n_trophy_ages: 10
upow: 1
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "2obs-UM3-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
41 changes: 41 additions & 0 deletions hyperpars/for_results/ppo_mwt_UM1.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_mwt'
n_observs: 1
#
harvest_fn_name: "default"
upow: 1
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "mwt-UM1-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
41 changes: 41 additions & 0 deletions hyperpars/for_results/ppo_mwt_UM2.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
# algo
algo: "PPO"
total_timesteps: 6000000
algo_config:
tensorboard_log: "../../../logs"
#
policy: 'MlpPolicy'
# learning_rate: 0.00015
policy_kwargs: "dict(net_arch=[64, 32, 16])"
#
# batch_size: 512
# gamma: 0.9999
# learning_rate: !!float 7.77e-05
# ent_coef: 0.00429
# clip_range: 0.1
# gae_lambda: 0.9
# max_grad_norm: 5
# vf_coef: 0.19
# policy_kwargs: "dict(log_std_init=-3.29, ortho_init=False, net_arch=[256, 128])"
# policy_kwargs: "dict(net_arch=[256, 128])"
use_sde: True
# clip_range: 0.1

# env
env_id: "AsmEnv"
config:
observation_fn_id: 'observe_mwt'
n_observs: 1
#
harvest_fn_name: "default"
upow: 0.6
n_envs: 12

# io
repo: "cboettig/rl-ecology"
save_path: "../saved_agents/results/"

# misc
id: "mwt-UM2-64-32-16"
# id: "short-test"
additional_imports: ["torch"]
Loading

0 comments on commit 6ccf3a8

Please sign in to comment.