Modern neural network visualization for the AI era. Explore, analyze, and understand your ONNX models with an intuitive graph-based interface.
Features • Installation • Usage • Development • Contribute
-
🎯 Interactive Graph Visualization
- Intuitive node-based visualization
- Pan, zoom, and interactive exploration
- Smart layout algorithms for complex models
- Custom node grouping and collapsing
-
🔍 Model Analysis
- Detailed layer inspection
- Parameter visualization
- Memory usage analysis (upcoming)
- Performance profiling (upcoming)
-
🎨 Modern UI/UX
- Dark/Light theme support
- Responsive design
- Command palette (⌘K)
- Keyboard shortcuts
-
🛠 Developer Tools
- Model comparison
- Export capabilities
- Custom scripting support
- Extensive API
- Python 3.8+
- Node.js 16+
- npm/yarn
# Create and activate virtual environment
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
cd backend
pip install -r requirements.txt
# Start the server
uvicorn app.main:app --reload
# Install dependencies
cd frontend
npm install
# Start development server
npm start
The application will be available at:
- Frontend: http://localhost:3000
- Backend API: http://localhost:8000
- API Documentation: http://localhost:8000/docs
onnx-visualizer/
├── backend/ # FastAPI backend
│ ├── app/
│ │ ├── api/ # API routes
│ │ ├── core/ # Business logic
│ │ ├── models/ # Data models
│ │ └── utils/ # Utilities
│ └── requirements.txt # Python dependencies
│
├── frontend/ # React + TypeScript
│ ├── src/
│ │ ├── components/ # React components
│ │ ├── services/ # API services
│ │ ├── types/ # TypeScript types
│ │ └── utils/ # Utilities
│ └── package.json # Frontend dependencies
# Backend tests
cd backend
pytest
# Frontend tests
cd frontend
npm test
- Backend: Black + isort
- Frontend: ESLint + Prettier
Contributions are welcome! Please read our Contributing Guide for details on our code of conduct and the process for submitting pull requests.
This project is licensed under the MIT License - see the LICENSE file for details.
- ONNX for the model format
- React Flow for graph visualization
- shadcn/ui for UI components
- All our contributors