-
Getting started
-
Overview: the machine learning process
-
Pytorch & other tools, installation
-
Project: Fashion MNIST
-
-
Tensors
-
What's a tensor?
-
Operations on tensors
-
Tensor calculus
-
Project: Images
-
-
Differentiation
-
Differential calculus
-
Derivative, partial derivative
-
Gradient, Jacobian Matrix,
-
Differential, Chain rule
-
higher order differential calculus
-
-
Differentiable programming:
-
Automatic differentiation
-
Computation graph
-
Forward/backward differentiation
-
In Pytorch
-
Tensor, Variable, Function
-
-
Project: Hamiltonian mechanics (?)
-
-
Optimization
-
Concepts
-
Torch optimizers
-
Project: Quadratic function / Rosenbrock function / Map (?)
-
-
Datasets
-
Tables & pandas
-
... (structure & formats & tools "in the wild"?)
-
-
Machine learning
-
Linear models
-
Logistic regression
-
Neural networks
-
-
📖 🇫🇷 Calcul Différentiel, Intégrale et Stochastique by Sébastien Boisgérault, Thomas Romary, Emilie Chautru et Pauline Bernard.
-
📖 🇺🇸 Elements of Differentiable Programming by Mathieu Blondel and Vincent Roulet.
-
📖 🇺🇸 The Little Book of Deep Learning by François Fleuret.
-
📖 🇺🇸 Learning Theory from First Principles by Francis Bach.
-
📖 🇺🇸 Scientific Visualization: Python + Matplotlib by Nicolas Rougier.