Skip to content
forked from junnei/mml

Mathematics For Machine Learning Study

License

Notifications You must be signed in to change notification settings

boostcampaitech2/mml

 
 

Repository files navigation

MML Study

A collection of contents studied about "Mathematics for Machine Learning".

Easily learn from GitHub Pages with high-quality content.




Group Member

All of them participated in this study with high-quality content!

Thanks goes to these wonderful people :

Contributing

Bug reports and pull requests are welcome on GitHub at https://github.com/junnei/mml.

Feel free to contribute with high-quality contents!

Requirements

(If Docker you don't need to install all, just run it and Open your browser at http://localhost:4000/mml/kr)

$ docker-compose up

First, we need to install ruby (v2.7.3 in my case) [Home page]

If Windows OS, Download RubyInstaller

## Linux
$ sudo apt install ruby ruby-dev build-essential

## MacOS
$ brew install ruby

And then install jekyll :

$ gem install bundler:2.1.4 jekyll

Installation

First, fork this repository and clone to your local machine.

$ git clone https://github.com/[YOUR_GITHUB_ID]/mml
$ cd mml

Install gem dependencies by :

$ bundle install
## if bundler version error, 'bundle _2.1.4_ install'

If Ruby >= 3.0.0, before install gem dependencies :

$ bundle add webrick
## if bundler version error, 'bundle _2.1.4_ add webrick'

You should preview the site contents before contributing, so just run it by:

$ bundle exec jekyll serve

This starts a Jekyll server, and now you could test whatever you added.

Open your browser at http://localhost:4000/mml/kr

Submitting code changes:

Add your information in _data/writers.yml.

#ex)
junnei:
  kr:
    name: 장성준
  en:
    name: Seongjun Jang
[YOUR_GITHUB_ID]:
  kr:
    name: [YOUR_NAME/KR](홍길동)
  en:
    name: [YOUR_NAME/EN](John Doe)
  • Open a Pull Request
  • Await code review
  • Ta-da! You've become a contributor!😆

Progress of Studying

Progress Contents Assigned to Update Date Status
Chapter 2.1 - 2.5 Linear Algebra (선형대수) Seongjun Jang(장성준) 2022-07-10 ✔️
Chapter 2.6 - 2.9 Linear Algebra (선형대수) Woojung Han(한우정)
Sangeun Park(박상은)
Junghun Kim(김정훈)
2022-07-17 ♻️
Chapter 3.1 - 3.10 Analytic Geometry (해석기하학) Lim SuHyeong(임수형)
Wonhyeong Seo(서원형)
JuYoung Suk(석주영)
2022-07-17 ♻️
Chapter 4.1 - 4.8 Matrix Decompositions (행렬분해) Wonhyeong Seo(서원형)
Ian Na(나경훈)
Jinyoung Son(손진영)
2022-07-24 ♻️
Chapter 5.1 - 5.9 Vector Calculus (벡터 미적분학) WonJoon Choi(최원준)
ChanHee Kang(강찬희)
2022-07-31
Chapter 6.1 - 6.8 Probability and Distributions
(확률과 분포)
Kim YoonJong(김윤종)
Kim Juwon(김주원)
Minjeong Yoo(유민정)
2022-08-07
Chapter 7.1 - 7.4 Continuous Optimizations
(연속 최적화)
Lim SuHyeong(임수형)
Ian Na(나경훈)
2022-08-14
Chapter 8.1 - 8.6 When Models Meet Datas
(모델과 데이터)
Woojung Han(한우정)
Junghun Kim(김정훈)
WonJoon Choi(최원준)
2022-08-14
Chapter 9.1 - 9.5 Linear Regression (선형회귀) Kim YoonJong(김윤종)
Kim Juwon(김주원)
Minjeong Yoo(유민정)
2022-08-21
Chapter 10.1 - 10.8 Dimensionality Reduction with
Principal Component Analysis
(차원 축소 w/ PCA)
Sangeun Park(박상은)
Seongjun Jang(장성준)
2022-08-21
Chapter 11.1 - 11.5 Density Estimation with
Gaussian Mixture Models
(밀도 추정)
ChanHee Kang(강찬희)
JuYoung Suk(석주영)
2022-08-28
Chapter 12.1 - 12.6 Classification with
Support Vector Machines
(분류 w/ SVM)
Jinyoung Son(손진영) 2022-08-28

License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

CC BY-NC-SA 4.0

About

Mathematics For Machine Learning Study

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • SCSS 51.9%
  • HTML 25.9%
  • JavaScript 15.8%
  • Ruby 5.8%
  • Liquid 0.2%
  • Dockerfile 0.2%
  • Shell 0.2%