-
Notifications
You must be signed in to change notification settings - Fork 774
/
RangeISAMExample_plaza2.cpp
238 lines (202 loc) · 8.34 KB
/
RangeISAMExample_plaza2.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
/* ----------------------------------------------------------------------------
* GTSAM Copyright 2010, Georgia Tech Research Corporation,
* Atlanta, Georgia 30332-0415
* All Rights Reserved
* Authors: Frank Dellaert, et al. (see THANKS for the full author list)
* See LICENSE for the license information
* -------------------------------------------------------------------------- */
/**
* @file RangeISAMExample_plaza2.cpp
* @brief A 2D Range SLAM example
* @date June 20, 2013
* @author Frank Dellaert
*/
// Both relative poses and recovered trajectory poses will be stored as Pose2.
#include <gtsam/geometry/Pose2.h>
using gtsam::Pose2;
// gtsam::Vectors are dynamic Eigen vectors, Vector3 is statically sized.
#include <gtsam/base/Vector.h>
using gtsam::Vector;
using gtsam::Vector3;
// Unknown landmarks are of type Point2 (which is just a 2D Eigen vector).
#include <gtsam/geometry/Point2.h>
using gtsam::Point2;
// Each variable in the system (poses and landmarks) must be identified with a
// unique key. We can either use simple integer keys (1, 2, 3, ...) or symbols
// (X1, X2, L1). Here we will use Symbols.
#include <gtsam/inference/Symbol.h>
using gtsam::Symbol;
// We want to use iSAM2 to solve the range-SLAM problem incrementally.
#include <gtsam/nonlinear/ISAM2.h>
// iSAM2 requires as input a set set of new factors to be added stored in a
// factor graph, and initial guesses for any new variables in the added factors.
#include <gtsam/nonlinear/NonlinearFactorGraph.h>
#include <gtsam/nonlinear/Values.h>
// We will use a non-linear solver to batch-initialize from the first 150 frames
#include <gtsam/nonlinear/LevenbergMarquardtOptimizer.h>
// Measurement functions are represented as 'factors'. Several common factors
// have been provided with the library for solving robotics SLAM problems:
#include <gtsam/sam/RangeFactor.h>
#include <gtsam/slam/BetweenFactor.h>
#include <gtsam/slam/dataset.h>
// Timing, with functions below, provides nice facilities to benchmark.
#include <gtsam/base/timing.h>
using gtsam::tictoc_print_;
// Standard headers, added last, so we know headers above work on their own.
#include <fstream>
#include <iostream>
#include <random>
#include <set>
#include <string>
#include <utility>
#include <vector>
namespace NM = gtsam::noiseModel;
// Data is second UWB ranging dataset, B2 or "plaza 2", from
// "Navigating with Ranging Radios: Five Data Sets with Ground Truth"
// by Joseph Djugash, Bradley Hamner, and Stephan Roth
// https://www.ri.cmu.edu/pub_files/2009/9/Final_5datasetsRangingRadios.pdf
// load the odometry
// DR: Odometry Input (delta distance traveled and delta heading change)
// Time (sec) Delta Distance Traveled (m) Delta Heading (rad)
using TimedOdometry = std::pair<double, Pose2>;
std::list<TimedOdometry> readOdometry() {
std::list<TimedOdometry> odometryList;
std::string data_file = gtsam::findExampleDataFile("Plaza2_DR.txt");
std::ifstream is(data_file.c_str());
while (is) {
double t, distance_traveled, delta_heading;
is >> t >> distance_traveled >> delta_heading;
odometryList.emplace_back(t, Pose2(distance_traveled, 0, delta_heading));
}
is.clear(); /* clears the end-of-file and error flags */
return odometryList;
}
// load the ranges from TD
// Time (sec) Sender / Antenna ID Receiver Node ID Range (m)
using RangeTriple = std::tuple<double, size_t, double>;
std::vector<RangeTriple> readTriples() {
std::vector<RangeTriple> triples;
std::string data_file = gtsam::findExampleDataFile("Plaza2_TD.txt");
std::ifstream is(data_file.c_str());
while (is) {
double t, range, sender, receiver;
is >> t >> sender >> receiver >> range;
triples.emplace_back(t, receiver, range);
}
is.clear(); /* clears the end-of-file and error flags */
return triples;
}
// main
int main(int argc, char** argv) {
// load Plaza2 data
std::list<TimedOdometry> odometry = readOdometry();
size_t M = odometry.size();
std::cout << "Read " << M << " odometry entries." << std::endl;
std::vector<RangeTriple> triples = readTriples();
size_t K = triples.size();
std::cout << "Read " << K << " range triples." << std::endl;
// parameters
size_t minK =
150; // minimum number of range measurements to process initially
size_t incK = 25; // minimum number of range measurements to process after
bool robust = true;
// Set Noise parameters
Vector priorSigmas = Vector3(1, 1, M_PI);
Vector odoSigmas = Vector3(0.05, 0.01, 0.1);
double sigmaR = 100; // range standard deviation
const NM::Base::shared_ptr // all same type
priorNoise = NM::Diagonal::Sigmas(priorSigmas), // prior
looseNoise = NM::Isotropic::Sigma(2, 1000), // loose LM prior
odoNoise = NM::Diagonal::Sigmas(odoSigmas), // odometry
gaussian = NM::Isotropic::Sigma(1, sigmaR), // non-robust
tukey = NM::Robust::Create(NM::mEstimator::Tukey::Create(15),
gaussian), // robust
rangeNoise = robust ? tukey : gaussian;
// Initialize iSAM
gtsam::ISAM2 isam;
// Add prior on first pose
Pose2 pose0 = Pose2(-34.2086489999201, 45.3007639991120, M_PI - 2.021089);
gtsam::NonlinearFactorGraph newFactors;
newFactors.addPrior(0, pose0, priorNoise);
gtsam::Values initial;
initial.insert(0, pose0);
// We will initialize landmarks randomly, and keep track of which landmarks we
// already added with a set.
std::mt19937_64 rng;
std::normal_distribution<double> normal(0.0, 100.0);
std::set<Symbol> initializedLandmarks;
// set some loop variables
size_t i = 1; // step counter
size_t k = 0; // range measurement counter
bool initialized = false;
Pose2 lastPose = pose0;
size_t countK = 0;
// Loop over odometry
gttic_(iSAM);
for (const TimedOdometry& timedOdometry : odometry) {
//--------------------------------- odometry loop --------------------------
double t;
Pose2 odometry;
std::tie(t, odometry) = timedOdometry;
// add odometry factor
newFactors.emplace_shared<gtsam::BetweenFactor<Pose2>>(i - 1, i, odometry,
odoNoise);
// predict pose and add as initial estimate
Pose2 predictedPose = lastPose.compose(odometry);
lastPose = predictedPose;
initial.insert(i, predictedPose);
// Check if there are range factors to be added
while (k < K && t >= std::get<0>(triples[k])) {
size_t j = std::get<1>(triples[k]);
Symbol landmark_key('L', j);
double range = std::get<2>(triples[k]);
newFactors.emplace_shared<gtsam::RangeFactor<Pose2, Point2>>(
i, landmark_key, range, rangeNoise);
if (initializedLandmarks.count(landmark_key) == 0) {
std::cout << "adding landmark " << j << std::endl;
double x = normal(rng), y = normal(rng);
initial.insert(landmark_key, Point2(x, y));
initializedLandmarks.insert(landmark_key);
// We also add a very loose prior on the landmark in case there is only
// one sighting, which cannot fully determine the landmark.
newFactors.emplace_shared<gtsam::PriorFactor<Point2>>(
landmark_key, Point2(0, 0), looseNoise);
}
k = k + 1;
countK = countK + 1;
}
// Check whether to update iSAM 2
if ((k > minK) && (countK > incK)) {
if (!initialized) { // Do a full optimize for first minK ranges
std::cout << "Initializing at time " << k << std::endl;
gttic_(batchInitialization);
gtsam::LevenbergMarquardtOptimizer batchOptimizer(newFactors, initial);
initial = batchOptimizer.optimize();
gttoc_(batchInitialization);
initialized = true;
}
gttic_(update);
isam.update(newFactors, initial);
gttoc_(update);
gttic_(calculateEstimate);
gtsam::Values result = isam.calculateEstimate();
gttoc_(calculateEstimate);
lastPose = result.at<Pose2>(i);
newFactors = gtsam::NonlinearFactorGraph();
initial = gtsam::Values();
countK = 0;
}
i += 1;
//--------------------------------- odometry loop --------------------------
} // end for
gttoc_(iSAM);
// Print timings
tictoc_print_();
// Print optimized landmarks:
gtsam::Values finalResult = isam.calculateEstimate();
for (auto&& landmark_key : initializedLandmarks) {
Point2 p = finalResult.at<Point2>(landmark_key);
std::cout << landmark_key << ":" << p.transpose() << "\n";
}
exit(0);
}