Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

TypeError: bwd(): incompatible function arguments. #253

Open
IchigoJiken opened this issue Sep 17, 2024 · 0 comments
Open

TypeError: bwd(): incompatible function arguments. #253

IchigoJiken opened this issue Sep 17, 2024 · 0 comments

Comments

@IchigoJiken
Copy link

Hi,

Similar error to the following closed issue, but I have not been able to resolve it.
#43

I ran https://github.com/bowang-lab/scGPT/blob/main/tutorials/Tutorial_Perturbation.ipynb and got the following error:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[28], line 6
      3 train_loader = pert_data.dataloader["train_loader"]
      4 valid_loader = pert_data.dataloader["val_loader"]
----> 6 train(
      7     model,
      8     train_loader,
      9 )
     11 val_res = eval_perturb(valid_loader, model, device)
     12 val_metrics = compute_perturbation_metrics(
     13     val_res, pert_data.adata[pert_data.adata.obs["condition"] == "ctrl"]
     14 )

File /y/Jiro/2024/BR240105-01_main/240722-foundation_model/240722-scGPT_test/240917-perturbation.py:61
     58     loss = loss_mse = criterion(output_values, target_values, masked_positions)
     60 model.zero_grad()
---> 61 scaler.scale(loss).backward()
     62 scaler.unscale_(optimizer)
     63 with warnings.catch_warnings(record=True) as w:

File ~/miniconda3/envs/scgpt_3/lib/python3.10/site-packages/torch/_tensor.py:492, in Tensor.backward(self, gradient, retain_graph, create_graph, inputs)
    482 if has_torch_function_unary(self):
    483     return handle_torch_function(
    484         Tensor.backward,
    485         (self,),
   (...)
    490         inputs=inputs,
    491     )
--> 492 torch.autograd.backward(
    493     self, gradient, retain_graph, create_graph, inputs=inputs
    494 )

File ~/miniconda3/envs/scgpt_3/lib/python3.10/site-packages/torch/autograd/__init__.py:251, in backward(tensors, grad_tensors, retain_graph, create_graph, grad_variables, inputs)
    246     retain_graph = create_graph
    248 # The reason we repeat the same comment below is that
    249 # some Python versions print out the first line of a multi-line function
    250 # calls in the traceback and some print out the last line
--> 251 Variable._execution_engine.run_backward(  # Calls into the C++ engine to run the backward pass
    252     tensors,
    253     grad_tensors_,
    254     retain_graph,
    255     create_graph,
    256     inputs,
    257     allow_unreachable=True,
    258     accumulate_grad=True,
    259 )

File ~/miniconda3/envs/scgpt_3/lib/python3.10/site-packages/torch/autograd/function.py:288, in BackwardCFunction.apply(self, *args)
    282     raise RuntimeError(
    283         "Implementing both 'backward' and 'vjp' for a custom "
    284         "Function is not allowed. You should only implement one "
    285         "of them."
    286     )
    287 user_fn = vjp_fn if vjp_fn is not Function.vjp else backward_fn
--> 288 return user_fn(self, *args)

File ~/miniconda3/envs/scgpt_3/lib/python3.10/site-packages/flash_attn/flash_attn_interface.py:78, in FlashAttnQKVPackedFunc.backward(ctx, dout, *args)
     76 qkv, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
     77 dqkv = torch.empty_like(qkv)
---> 78 _flash_attn_backward(
     79     dout, qkv[:, 0], qkv[:, 1], qkv[:, 2], out, softmax_lse,
     80     dqkv[:, 0], dqkv[:, 1], dqkv[:, 2], cu_seqlens, cu_seqlens,
     81     ctx.max_seqlen, ctx.max_seqlen, ctx.dropout_p, ctx.softmax_scale, ctx.causal,
     82     rng_state=rng_state, num_splits=1 if ctx.deterministic else 0,
     83 )
     84 return dqkv, None, None, None, None, None, None, None

File ~/miniconda3/envs/scgpt_3/lib/python3.10/site-packages/flash_attn/flash_attn_interface.py:44, in _flash_attn_backward(dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, causal, rng_state, num_splits, generator)
     36 """
     37 num_splits: whether to parallelize over the seqlen_k dimension (num_splits > 1) or
     38 not (num_splits = 1). num_splits=0 means it will be set by an internal heuristic.
   (...)
     41 This hyperparameter can be tuned for performance, but default value (heuristic) should work fine.
     42 """
     43 dout = dout.contiguous()  # CUDA code assumes that dout is contiguous
---> 44 _, _, _, softmax_d = flash_attn_cuda.bwd(
     45     dout, q, k, v, out, softmax_lse, dq, dk, dv, cu_seqlens_q, cu_seqlens_k,
     46     max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale, False, causal,
     47     # num_splits, generator, rng_state)
     48     num_splits, generator)
     49 # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
     50 #     breakpoint()
     51 return dq, dk, dv, softmax_d

TypeError: bwd(): incompatible function arguments. The following argument types are supported:
    1. (arg0: torch.Tensor, arg1: torch.Tensor, arg2: torch.Tensor, arg3: torch.Tensor, arg4: torch.Tensor, arg5: torch.Tensor, arg6: torch.Tensor, arg7: torch.Tensor, arg8: torch.Tensor, arg9: torch.Tensor, arg10: torch.Tensor, arg11: int, arg12: int, arg13: float, arg14: float, arg15: bool, arg16: bool, arg17: int, arg18: Optional[torch.Generator], arg19: Optional[torch.Tensor]) -> List[torch.Tensor]

Invoked with: tensor([[[ 7.6294e-06,  2.0862e-06, -1.4901e-06,  ..., -4.2915e-06,
          -2.4438e-06,  1.3232e-05],
         [ 2.9802e-07, -1.0252e-05,  7.8678e-06,  ...,  3.5167e-06,
          -3.5763e-06, -1.7881e-07],
         [-8.8811e-06, -9.5367e-07,  3.0398e-06,  ..., -1.1384e-05,
          -8.2850e-06,  8.2850e-06],
         ...,

I downloaded scGPT_human from
https://drive.google.com/drive/folders/1oWh_-ZRdhtoGQ2Fw24HP41FgLoomVo-y

I am using
flash_attn 1.0.3
torch 2.1.0
scgpt 0.2.1
CUDA 12.1.0
Python 3.10.11

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant