- Setting up your environment
Make sure your environment has the following conda packages installed, in addition to standard Anaconda install (Python 2.x): pymvpa pybids
The examples below deploy the training and testing of classifiers using a TORQUE queue with "mksub".
cd ${YourExperimentDirectory} git clone https://github.com/bregmanstudio/auditoryimageryMVPA.git ln -s auditoryimageryMVPA/audimg.py . ln -s auditoryimageryMVPA/qsub_audimg_subj_task.sh . ln -s auditoryimageryMVPA/run_audimg_subj_task.qsub .
- How to run classifier jobs on the queue cd ${YourExperimentDirectory} EDIT run_audimg_subj_task.qsub for your email address (if you want email notifications from discovery cluster queues) EDIT audimg.py # set ROOTDIR to point to your working directory
Autoencoder classifiers . qsub_audimg_subj_task.sh # This shell script will launch jobs to train/test classifiers for all subjects and all experiments (pch-class, pch-classX, timbre, timbre-X, pch-height)
Autoencoder results will be written to the following sub-directory in your current working directory: results_audimg_subj_task_mkc_del0_dur1_SVDMAP_n10000_svd1.00_autoenc
Non-autoencoder classifiers EDIT qsub_audimg_subj_task.sh # set autoenc=0 . qsub_audimg_subj_task.sh # This shell script will launch jobs to train/test classifiers for all subjects and all experiments (pch-class, pch-classX, timbre, timbre-X, pch-height)
Non-autoencoder results will be written to the following sub-directory in your current working directory: results_audimg_subj_task_mkc_del0_dur1_SVDMAP_n10000_svd1.00
- Seeing the results
cd ${YourExperimentDirectory} ipython # launch an interactive python shell
In [1]: import audimg as A In [2]: subj_res, grp_res = A.collate_model_results(tasks=['pch-class','pch-classX'], autoenc=1, n_null=10000, svdmap=1.0, show=True)
This will output the following statistical summaries to the terminal, comparing autoencoder and non-autoencoder classifiers (or something like this, depending on your autoencoder params):
results_audimg_subj_task_SVDMAP_del0_dur1_n10000_autoenc_null
ROI_key ROI ACC MIN/MAX P (FDR)
1034 lh-transversetemporal 0.1642 0.1250/0.1964 0.0039
ROI_key ROI ACC MIN/MAX P (FDR)
1019 lh-parsorbitalis 0.1625 0.0893/0.2381 0.0368
1024 lh-precentral 0.1607 0.1190/0.2262 0.0368
1030 lh-superiortemporal 0.1684 0.1190/0.2202 0.0087
1031 lh-supramarginal 0.1642 0.0952/0.2440 0.0355
1035 lh-insula 0.1649 0.1310/0.2440 0.0163
2001 rh-bankssts 0.1604 0.1131/0.2083 0.0180
2020 rh-parstriangularis 0.1688 0.0952/0.2500 0.0368
2024 rh-precentral 0.1719 0.1071/0.2321 0.0103
2030 rh-superiortemporal 0.1726 0.1190/0.2560 0.0124
2031 rh-supramarginal 0.1656 0.1250/0.2440 0.0251
2035 rh-insula 0.1649 0.1190/0.2381 0.0124
ROI_key ROI ACC MIN/MAX P (FDR)
2030 rh-superiortemporal 0.1628 0.1310/0.1964 0.0156