Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add python script to convert QE json model to binary and vice versa #55

Closed
wants to merge 1 commit into from
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Add python script to convert QE json model to binary and vice versa
felipesantosk committed Jan 29, 2022
commit ddce16f2054a5bfd16745e4b08daa9d761bb10d1
27 changes: 27 additions & 0 deletions quality/lr/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,27 @@
# Quality Model Tool

- The python script ```qualityestimator_json_to_bin.py``` converts a logistic regressor quality estimator model from json to binary file and vice versa.

- To converts a json to binary:

```console
python qualityestimator_json_to_bin.py --to_json qe_model.json --out qe_model.bin
```

- To converts a binary to json:

```console
python qualityestimator_json_to_bin.py --from_json qe_model.bin --out qe_model.json
```

- The json must follow this structure:
```json
{
"mean_": [ 0.0, 0.0, 0.0, 0.0, ],
"scale_": [ 0.0, 0.0, 0.0, 0.0, ],
"coef_": [ 0.0, 0.0, 0.0, 0.0, ],
"intercept_": 0.0
}
```

- The binary file will have the following structure defined on [LogisticRegressorQualityEstimator](https://github.com/browsermt/bergamot-translator/blob/main/src/translator/quality_estimator.h#L100-L108).
91 changes: 91 additions & 0 deletions quality/lr/qualityestimator_json_to_bin.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
import argparse
import json
import struct
from collections import namedtuple

# magic(uint64_t), lrParametersDims(uint64_t)
Header_fmt = "<1Q1Q"
Header_len = struct.calcsize(Header_fmt)

QE_MAGIC_NUMBER = 8704388732126802304


def from_qe_file(file):
magic, paramDim = struct.unpack(Header_fmt, file.read(Header_len))

if magic != QE_MAGIC_NUMBER:
print("Invalid quality estimator file.")
exit(1)

# scale_[N] + mean_[N] + coef_[N] + intercept_
lrParams_fmt = f"<{3*paramDim+1}f"

lrParams_size = struct.calcsize(lrParams_fmt)

params = list(struct.unpack(lrParams_fmt, file.read(lrParams_size)))

lrParams = {}
lrParams["scale_"] = params[:paramDim]
lrParams["mean_"] = params[paramDim : 2 * paramDim]
lrParams["coef_"] = params[2 * paramDim : 3 * paramDim]
lrParams["intercept_"] = params[3 * paramDim]

return lrParams


def to_binary(lrParams):

paramDims = len(lrParams["scale_"])

if paramDims != len(lrParams["mean_"]) and paramDims != len(
lrParams["coef_"]
):
print("Invalid LR parameters.")
exit(1)

lrParams_fmt = f"<{3*paramDims+1}f"

params = (
lrParams["scale_"]
+ lrParams["mean_"]
+ lrParams["coef_"]
+ [lrParams["intercept_"]]
)

return struct.pack(Header_fmt, QE_MAGIC_NUMBER, paramDims) + struct.pack(
lrParams_fmt, *params
)


parser = argparse.ArgumentParser(description="Read and write quality estimator files.")
parser.add_argument(
"--to_json", type=argparse.FileType("rb"), help="Read quality estimator file"
)
parser.add_argument(
"--from_json",
type=argparse.FileType("r"),
help="Read json file and generate quality estimator binary",
)
parser.add_argument(
"--out",
type=argparse.FileType("wb"),
help="Output generated data from to_json or from_json option",
)

args = parser.parse_args()

output = None

if args.to_json:
output = json.dumps(from_qe_file(args.to_json), indent=3)
elif args.from_json:
output = to_binary(json.loads(args.from_json.read()))

if output is None:
exit(0)

if args.out:
args.out.write(output.encode("UTF-8") if type(output) is str else output)
args.out.close()
else:
print(output)