-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7e4059c
commit 011821d
Showing
89 changed files
with
9,612 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,13 @@ | ||
Version: 1.0 | ||
|
||
RestoreWorkspace: Default | ||
SaveWorkspace: Default | ||
AlwaysSaveHistory: Default | ||
|
||
EnableCodeIndexing: Yes | ||
UseSpacesForTab: Yes | ||
NumSpacesForTab: 2 | ||
Encoding: UTF-8 | ||
|
||
RnwWeave: knitr | ||
LaTeX: pdfLaTeX |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
|
||
# soe00: idUR-SVAR-SV | ||
################################################# | ||
|
||
model = "00" | ||
|
||
library(bsvars) | ||
load("empiRical/data/soe.rda") | ||
|
||
TT = nrow(soe) | ||
lag_order = 8 | ||
lag_exogenous = 4 | ||
T = TT - max(lag_order, lag_exogenous) | ||
|
||
# exogenous = matrix(NA, TT - lag_exogenous, 0) | ||
# for (i in 0:lag_exogenous) { | ||
# exogenous = cbind(exogenous, as.matrix(soe[(lag_exogenous - i + 1):(TT - i), 6:8])) | ||
# } | ||
|
||
set.seed(1234) | ||
spec = specify_bsvar$new( | ||
# data = as.matrix(tail(soe[,1:5], T)), | ||
data = as.matrix(soe[,1:8]), | ||
p = lag_order, | ||
# exogenous = tail(exogenous, T) | ||
) | ||
|
||
burn = estimate(spec, 1e3) | ||
post = estimate(burn, 5e3) | ||
|
||
irfs = compute_impulse_responses(post, horizon = 60) | ||
plot(irfs) | ||
# fevd = compute_variance_decompositions(post, horizon = 60) | ||
|
||
# save(spec, post, file = paste0("results/soe", model, ".rda")) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
|
||
# download the small-open economy data from the FRED database | ||
# based on Groshenny, Javed (2023, WP) | ||
############################################################ | ||
|
||
create_interpolated_series <- function(data, start_date, end_date) { | ||
# function to interpolate quarterly to monthly data | ||
# start_date and end_date need to be given as a character with format "YYYY-MM-DD" | ||
|
||
# data object to merge by data all time series | ||
df <- data.frame(date = seq(as.Date(start_date), as.Date(end_date), by = "months")) | ||
df <- dplyr::left_join(df, data, by = "date") | ||
## interpolate GDP series | ||
# first shift GDP series such that Q1 is assigned to March etc | ||
df$X = c(rep(NA,2), df$value[1:(length(df$value) - 2)]) | ||
# now interpolate, taking into account leading and trailing NA values | ||
df <- dplyr::mutate(df, value_out = c(rep(NA, min(which(!is.na(df$X))) - 1), | ||
zoo::na.approx(df$X), | ||
rep(NA, length(df$date) - max(which(!is.na(df$X)))) | ||
) | ||
) | ||
df <- dplyr::select(df, c(date, value_out)) | ||
df | ||
} | ||
|
||
############################################################ | ||
# to set | ||
start_date = "1950-01-01" | ||
end_date = "2024-07-27" | ||
|
||
|
||
|
||
# US data | ||
############################################################ | ||
# QUARTERLY | ||
# real gdp | ||
gdp = fredr::fredr("GDPC1") | ||
df_gdp = create_interpolated_series(gdp, start_date, end_date) | ||
gdp = xts::xts(df_gdp$value_out / 1000, df_gdp$date, tclass = 'yearmon') | ||
gdp = xts::to.monthly(gdp, OHLC = FALSE, drop.time = TRUE) | ||
gdp = 100 * log(gdp) | ||
# dgdp = na.omit(12 * diff(gdp)) | ||
rm(df_gdp) | ||
plot(gdp) | ||
|
||
# Consumer Price Index: All Items for the United States | ||
cpi = fredr::fredr("USACPIALLMINMEI") | ||
cpi = xts::xts(cpi$value, cpi$date, tclass = 'yearmon') | ||
cpi = 100 * log(cpi) | ||
# pi = na.omit(12 * diff(cpi)) | ||
plot(cpi) | ||
|
||
# Federal Funds Effective Rate | ||
FFR = fredr::fredr("FEDFUNDS") | ||
FFR = xts::xts(FFR$value, FFR$date, tclass = 'yearmon') | ||
plot(FFR) | ||
|
||
|
||
# Australian data | ||
############################################################ | ||
|
||
aud_mb = readrba::read_rba(series_id = "DMABMN") | ||
aud_mb = xts::xts(log(aud_mb$value), aud_mb$date, tclass = 'yearmon') | ||
aud_mb = xts::to.monthly(aud_mb, OHLC = FALSE, drop.time = TRUE) | ||
plot(aud_mb) | ||
|
||
aud_hw = readrba::read_rba(series_id = "GLFMHW") | ||
aud_hw = xts::xts(log(aud_hw$value), aud_hw$date, tclass = 'yearmon') | ||
aud_hw = xts::to.monthly(aud_hw, OHLC = FALSE, drop.time = TRUE) | ||
plot(aud_hw) | ||
|
||
|
||
# QUARTERLY | ||
# Real Gross Domestic Product for Australia (Domestic Currency, Seasonally Adjusted) | ||
aud_gdp = fredr::fredr("NGDPRSAXDCAUQ") | ||
df_au_gdp = create_interpolated_series(aud_gdp, start_date, end_date) | ||
aud_gdp = na.omit(xts::xts(df_au_gdp$value / 1000, df_au_gdp$date, tclass = 'yearmon')) | ||
aud_gdp = xts::to.monthly(aud_gdp, OHLC = FALSE, drop.time = TRUE) | ||
aud_gdp = 100 * log(aud_gdp) | ||
rm(df_au_gdp) | ||
plot(aud_gdp) | ||
|
||
# QUARTERLY and MONTHLY | ||
# Quarterly CPI from FRED | ||
aud_cpi = fredr::fredr("AUSCPIALLQINMEI") | ||
df_au_cpi = create_interpolated_series(aud_cpi, start_date, end_date) | ||
aud_cpi_fr = xts::xts(df_au_cpi$value_out, df_au_cpi$date, tclass = 'yearmon') | ||
colnames(aud_cpi_fr) = "aud_cpi" | ||
aud_cpi_fr = na.omit(aud_cpi_fr$aud_cpi /as.numeric(aud_cpi_fr$aud_cpi["2017-09"])) | ||
|
||
# Monthly CPI from ABS | ||
aud_cpi_mont = readabs::read_abs(series_id = "A128478317T") | ||
aud_cpi_mont = xts::xts(aud_cpi_mont$value, aud_cpi_mont$date, tclass = 'yearmon') | ||
aud_cpi_mont = aud_cpi_mont/as.numeric(aud_cpi_mont["2017-10"]) | ||
|
||
# merge | ||
aud_cpi = rbind(aud_cpi_fr["/2017-08"], aud_cpi_mont) | ||
aud_cpi = xts::to.monthly(aud_cpi, OHLC = FALSE, drop.time = TRUE) | ||
aud_cpi = 100 * log(aud_cpi) | ||
plot(aud_cpi) | ||
|
||
# 3-Month or 90-day Rates and Yields: Interbank Rates for Australia (Percent, Not Seasonally Adjusted) | ||
aud_IR = fredr::fredr("IR3TIB01AUM156N") | ||
aud_IR = xts::xts(aud_IR$value, aud_IR$date, tclass = 'yearmon') | ||
plot(aud_IR) | ||
|
||
# cash rate | ||
aud_CR = readrba::read_rba(series_id = "FIRMMCRT") # Cash Rate Target | ||
aud_CR = xts::xts(aud_CR$value, aud_CR$date, tclass = 'yearmon') | ||
aud_CR = xts::to.monthly(aud_CR, OHLC = FALSE, drop.time = TRUE) | ||
plot(aud_CR) | ||
|
||
# TS | ||
aud_LTR = readrba::read_rba(series_id = "FCMYGBAG10") | ||
aud_LTR = xts::xts(aud_LTR$value, aud_LTR$date, tclass = 'yearmon') | ||
aud_LTR = xts::to.monthly(aud_LTR, OHLC = FALSE, drop.time = TRUE) | ||
aud_TS = na.omit(aud_LTR - aud_IR) | ||
colnames(aud_TS) = "aud_TS" | ||
|
||
# exchange rate | ||
aud_USD = readrba::read_rba(series_id = "FXRUSD") | ||
aud_USD = xts::xts(aud_USD$value, aud_USD$date, tclass = 'yearmon') | ||
aud_USD = xts::to.monthly(aud_USD, OHLC = FALSE, drop.time = TRUE) | ||
plot(aud_USD) | ||
|
||
aord_yahoo = "https://query1.finance.yahoo.com/v7/finance/download/^AORD?period1=345513600&period2=1722211200&interval=1d&events=history&includeAdjustedClose=true" | ||
aord_download = read.csv(aord_yahoo, na.strings = "null") | ||
aord_tmp = xts::xts(log(aord_download[,6]), as.Date(aord_download[,1])) | ||
aord_tmp = na.omit(aord_tmp) | ||
aud_aord = xts::to.monthly(aord_tmp, OHLC = FALSE, drop.time = TRUE) | ||
plot(aud_aord) | ||
|
||
us = na.omit(merge(gdp, cpi, FFR)) | ||
aud = na.omit(merge(aud_gdp, aud_cpi, aud_CR, aud_USD, aud_aord)) | ||
soe = na.omit(merge(aud, us)) | ||
save(soe, file = "empiRical/data/soe.rda") |
Binary file not shown.
Oops, something went wrong.