- V100
- Docker with functional NVIDIA GPU support
-
Create a docker container with NVIDIA GPU enabled (
--shm-size
must be set large enough for PyTorch dataloader workers)docker run --name mimose -itd --gpus all --shm-size 32G -v <dataset_path>:/opt/dataset pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel bash docker exec -it mimose bash
-
Install Git using
apt
chmod 777 /tmp # apt update would fail without this apt update apt install -y git
-
Setup conda, create a new env and install PyTorch
# Setup conda conda init . ~/.bashrc # Create conda env and install PyTorch conda create -n mimose python=3.9 conda activate mimose pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
-
Install
mimose-mmdet
and dependencies (download coco dataset if not exist)# Setup mimose-mmdet repo and install dependencies git clone https://github.com/mimose-project/mimose-mmdet && cd mimose-mmdet pip install cython mmcv-full apt install libgl1 libglib2.0-0 # required by opencv pip install -v -e . # Create dataset symlink ln -s /opt/dataset ./data # assume coco dataset is located at `/opt/dataset/coco`
-
Run the evaluation scripts for mimose:
cd mimose-mmdet # Run the evaluation all-in-one script! bash exp.sh
-
Check logs in
./log
directory -
You can also run seperate evaluation scripts executed in
exp.sh
manually.