Skip to content

buaa-hipo/mimose-mmdet

Repository files navigation

Requirements

  • V100
  • Docker with functional NVIDIA GPU support

Install

  1. Create a docker container with NVIDIA GPU enabled (--shm-size must be set large enough for PyTorch dataloader workers)

    docker run --name mimose -itd --gpus all --shm-size 32G -v <dataset_path>:/opt/dataset pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel bash
    docker exec -it mimose bash
  2. Install Git using apt

    chmod 777 /tmp # apt update would fail without this
    apt update
    apt install -y git
  3. Setup conda, create a new env and install PyTorch

    # Setup conda
    conda init
    . ~/.bashrc
    
    # Create conda env and install PyTorch
    conda create -n mimose python=3.9
    conda activate mimose
    pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
  4. Install mimose-mmdet and dependencies (download coco dataset if not exist)

    # Setup mimose-mmdet repo and install dependencies
    git clone https://github.com/mimose-project/mimose-mmdet && cd mimose-mmdet
    pip install cython mmcv-full
    apt install libgl1 libglib2.0-0 # required by opencv
    pip install -v -e .
    
    # Create dataset symlink
    ln -s /opt/dataset ./data # assume coco dataset is located at `/opt/dataset/coco`

Getting Started

  1. Run the evaluation scripts for mimose:

    cd mimose-mmdet
    # Run the evaluation all-in-one script!
    bash exp.sh
  2. Check logs in ./log directory

  3. You can also run seperate evaluation scripts executed in exp.sh manually.

About

No description, website, or topics provided.

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages