-
Notifications
You must be signed in to change notification settings - Fork 173
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[examples] Add bert emotional classification example (#253)
- Loading branch information
Showing
9 changed files
with
30,747 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
arg0.data | ||
arg1.data | ||
bert.mlir |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
add_custom_command( | ||
OUTPUT ${BUDDY_EXAMPLES_DIR}/BuddyBert/bert.mlir ${BUDDY_EXAMPLES_DIR}/BuddyBert/arg0.data ${BUDDY_EXAMPLES_DIR}/BuddyBert/arg1.data | ||
COMMAND python3 ${BUDDY_EXAMPLES_DIR}/BuddyBert/import-bert.py | ||
COMMENT "Generating bert.mlir and parameter files" | ||
) | ||
|
||
|
||
add_custom_command( | ||
OUTPUT bert.o | ||
COMMAND ${LLVM_MLIR_BINARY_DIR}/mlir-opt ${BUDDY_EXAMPLES_DIR}/BuddyBert/bert.mlir | ||
-pass-pipeline "builtin.module(func.func(tosa-to-linalg-named, tosa-to-linalg, tosa-to-tensor, tosa-to-arith), empty-tensor-to-alloc-tensor, convert-elementwise-to-linalg, arith-bufferize, func.func(linalg-bufferize, tensor-bufferize), func-bufferize)" | | ||
${LLVM_MLIR_BINARY_DIR}/mlir-opt | ||
-pass-pipeline "builtin.module(func.func(buffer-deallocation-simplification, convert-linalg-to-loops), eliminate-empty-tensors, func.func(llvm-request-c-wrappers),convert-math-to-llvm, convert-math-to-libm, convert-scf-to-cf, convert-arith-to-llvm, expand-strided-metadata, finalize-memref-to-llvm, convert-func-to-llvm, reconcile-unrealized-casts)" | | ||
${LLVM_MLIR_BINARY_DIR}/mlir-translate -mlir-to-llvmir | | ||
${LLVM_MLIR_BINARY_DIR}/llvm-as | | ||
${LLVM_MLIR_BINARY_DIR}/llc -filetype=obj -relocation-model=pic -O0 -o ${BUDDY_BINARY_DIR}/../examples/BuddyBert/bert.o | ||
DEPENDS ${BUDDY_EXAMPLES_DIR}/BuddyBert/bert.mlir | ||
COMMENT "Building bert.o" | ||
VERBATIM) | ||
|
||
add_library(BERT STATIC bert.o) | ||
|
||
SET_TARGET_PROPERTIES(BERT PROPERTIES LINKER_LANGUAGE C) | ||
|
||
add_executable(buddy-bert-run bert-main.cpp) | ||
target_link_directories(buddy-bert-run PRIVATE ${LLVM_MLIR_LIBRARY_DIR}) | ||
|
||
set(BUDDY_BERT_LIBS BERT mlir_c_runner_utils) | ||
target_link_libraries(buddy-bert-run ${BUDDY_BERT_LIBS}) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
# Buddy Compiler BERT Emotion Classification Example | ||
|
||
## Introduction | ||
This example shows how to use Buddy Compiler to compile a BERT model to MLIR code then run it. The [model](bhadresh-savani/bert-base-uncased-emotion) is trained to classify the emotion of a sentence into one of the following classes: sadness, joy, love, anger, fear, and surprise. | ||
|
||
|
||
## How to run | ||
1. Ensure that LLVM, Buddy Compiler and the Buddy Compiler python packages are installed properly. You can refer to [here](https://github.com/buddy-compiler/buddy-mlir) for more information and do a double check. | ||
|
||
2. Set the `PYTHONPATH` environment variable. | ||
```bash | ||
$ export PYTHONPATH=/path-to-buddy-mlir/llvm/build/tools/mlir/python_packages/mlir_core:/path-to-buddy-mlir/build/python_packages:${PYTHONPATH} | ||
``` | ||
|
||
3. Build and run the BERT example | ||
```bash | ||
$ cmake -G Ninja .. -DBUDDY_BERT_EXAMPLES=ON | ||
$ ninja buddy-bert-run | ||
$ cd bin | ||
$ ./buddy-bert-run | ||
``` | ||
|
||
4. Enjoy it! |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
//===- bert-main.cpp -----------------------------------------------------===// | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include <buddy/Core/Container.h> | ||
#include <buddy/LLM/TextContainer.h> | ||
#include <filesystem> | ||
#include <limits> | ||
#include <string> | ||
#include <utility> | ||
#include <vector> | ||
|
||
using namespace buddy; | ||
|
||
// Declare BERT forward function. | ||
extern "C" void | ||
_mlir_ciface_forward(MemRef<float, 2> *result, MemRef<float, 1> *arg0, | ||
MemRef<long long, 1> *arg1, MemRef<long long, 2> *arg2, | ||
MemRef<long long, 2> *arg3, MemRef<long long, 2> *arg4); | ||
|
||
void loadParameters(const std::string &floatParamPath, | ||
const std::string &int64ParamPath, | ||
MemRef<float, 1> &floatParam, | ||
MemRef<long long, 1> &int64Param) { | ||
std::ifstream floatParamFile(floatParamPath, std::ios::in | std::ios::binary); | ||
if (!floatParamFile.is_open()) { | ||
std::string errMsg = "Failed to open float param file: " + | ||
std::filesystem::canonical(floatParamPath).string(); | ||
throw std::runtime_error(errMsg); | ||
} | ||
floatParamFile.read(reinterpret_cast<char *>(floatParam.getData()), | ||
floatParam.getSize() * sizeof(float)); | ||
if (floatParamFile.fail()) { | ||
throw std::runtime_error("Failed to read float param file"); | ||
} | ||
floatParamFile.close(); | ||
|
||
|
||
std::ifstream int64ParamFile(int64ParamPath, std::ios::in | std::ios::binary); | ||
if (!int64ParamFile.is_open()) { | ||
std::string errMsg = "Failed to open int64 param file: " + | ||
std::filesystem::canonical(int64ParamPath).string(); | ||
throw std::runtime_error(errMsg); | ||
} | ||
int64ParamFile.read(reinterpret_cast<char *>(int64Param.getData()), | ||
int64Param.getSize() * sizeof(long long)); | ||
if (int64ParamFile.fail()) { | ||
throw std::runtime_error("Failed to read int64 param file"); | ||
} | ||
int64ParamFile.close(); | ||
} | ||
|
||
int main() { | ||
MemRef<float, 1> arg0({109486854}); | ||
MemRef<long long, 1> arg1({512}); | ||
loadParameters("../../examples/BuddyBert/arg0.data", | ||
"../../examples/BuddyBert/arg1.data", arg0, arg1); | ||
|
||
std::cout << "this BERT model will guess the emotion of your sentence" | ||
<< std::endl; | ||
std::cout << "What sentence do you want to say to BERT?" << std::endl; | ||
|
||
std::string vocabDir = "../../examples/BuddyBert/vocab.txt"; | ||
std::string pureStr; | ||
std::getline(std::cin, pureStr); | ||
Text<long long, 2> pureStrContainer(pureStr); | ||
pureStrContainer.tokenizeBert(vocabDir, 5); | ||
|
||
MemRef<float, 2> result({1, 6}); | ||
MemRef<long long, 2> attention_mask({1, 5}, 1LL); | ||
MemRef<long long, 2> token_type_ids({1, 5}, 0LL); | ||
_mlir_ciface_forward(&result, &arg0, &arg1, &pureStrContainer, | ||
&attention_mask, &token_type_ids); | ||
int predict_label = -1; | ||
float max_logits = std::numeric_limits<float>::min(); | ||
for (int i = 0; i < 6; i++) { | ||
if (max_logits < result.getData()[i]) { | ||
max_logits = result.getData()[i]; | ||
predict_label = i; | ||
} | ||
} | ||
|
||
std::vector<std::string> emotion = {"sadness", "joy", "love", | ||
"anger", "fear", "surprise"}; | ||
std::cout << "The emotion of this sentence is \"" << emotion[predict_label] | ||
<< "\"" << std::endl; | ||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,63 @@ | ||
# ===- import-bert.py -------------------------------------------------------- | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
# ===--------------------------------------------------------------------------- | ||
# | ||
# This is the test of llama2 model. | ||
# | ||
# ===--------------------------------------------------------------------------- | ||
|
||
import os | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
import torch | ||
from buddy.compiler.frontend import DynamoCompiler | ||
from buddy.compiler.ops import tosa | ||
from torch._inductor.decomposition import decompositions as inductor_decomp | ||
from transformers import BertForSequenceClassification, BertTokenizer | ||
|
||
model = BertForSequenceClassification.from_pretrained( | ||
"bhadresh-savani/bert-base-uncased-emotion" | ||
) | ||
model.eval() | ||
dynamo_compiler = DynamoCompiler( | ||
primary_registry=tosa.ops_registry, | ||
aot_autograd_decomposition=inductor_decomp, | ||
) | ||
|
||
tokenizer = BertTokenizer.from_pretrained( | ||
"bhadresh-savani/bert-base-uncased-emotion" | ||
) | ||
inputs = { | ||
"input_ids": torch.tensor([[1 for _ in range(5)]], dtype=torch.int64), | ||
"token_type_ids": torch.tensor([[0 for _ in range(5)]], dtype=torch.int64), | ||
"attention_mask": torch.tensor([[1 for _ in range(5)]], dtype=torch.int64), | ||
} | ||
with torch.no_grad(): | ||
module, params = dynamo_compiler.importer(model, **inputs) | ||
|
||
current_path = os.path.dirname(os.path.abspath(__file__)) | ||
|
||
with open(Path(current_path) / "bert.mlir", "w") as module_file: | ||
module_file.write(str(module)) | ||
|
||
float32_param = np.concatenate( | ||
[param.detach().numpy().reshape([-1]) for param in params[:-1]] | ||
) | ||
|
||
float32_param.tofile(Path(current_path) / "arg0.data") | ||
|
||
int64_param = params[-1].detach().numpy().reshape([-1]) | ||
int64_param.tofile(Path(current_path) / "arg1.data") |
Oops, something went wrong.