Skip to content

canerturkmen/chronos-forecasting

 
 

Repository files navigation

Chronos: Learning the Language of Time Series

preprint huggingface License: MIT

🚀 News

  • 08 Apr 2024: 🧪 Experimental MLX inference support added. If you have an Apple Silicon Mac, you can now obtain significantly faster forecasts from Chronos compared to CPU inference. This provides an alternative way to exploit the GPU on your Apple Silicon Macs together with the "mps" support in PyTorch.
  • 25 Mar 2024: v1.1.0 released with inference optimizations and pipeline.embed to extract encoder embeddings from Chronos.
  • 13 Mar 2024: Chronos paper and inference code released.

✨ Introduction

Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as synthetic data generated using Gaussian processes.

For details on Chronos models, training data and procedures, and experimental results, please refer to the paper Chronos: Learning the Language of Time Series.


Fig. 1: High-level depiction of Chronos. (Left) The input time series is scaled and quantized to obtain a sequence of tokens. (Center) The tokens are fed into a language model which may either be an encoder-decoder or a decoder-only model. The model is trained using the cross-entropy loss. (Right) During inference, we autoregressively sample tokens from the model and map them back to numerical values. Multiple trajectories are sampled to obtain a predictive distribution.

Architecture

The models in this repository are based on the T5 architecture. The only difference is in the vocabulary size: Chronos-T5 models use 4096 different tokens, compared to 32128 of the original T5 models, resulting in fewer parameters.

Zero-Shot Results

The following figure showcases the remarkable zero-shot performance of Chronos models on 27 datasets against local models, task-specific models and other pretrained models. For details on the evaluation setup and other results, please refer to the paper.


Fig. 2: Performance of different models on Benchmark II, comprising 27 datasets not seen by Chronos models during training. This benchmark provides insights into the zero-shot performance of Chronos models against local statistical models, which fit parameters individually for each time series, task-specific models trained on each task, and pretrained models trained on a large corpus of time series. Pretrained Models (Other) indicates that some (or all) of the datasets in Benchmark II may have been in the training corpus of these models. The probabilistic (WQL) and point (MASE) forecasting metrics were normalized using the scores of the Seasonal Naive baseline and aggregated through a geometric mean to obtain the Agg. Relative WQL and MASE, respectively.

📈 Usage

To perform inference with Chronos models, install this package by running:

pip install git+https://github.com/amazon-science/chronos-forecasting.git

Note

We have added 🧪experimental support for MLX inference. If you have an Apple Silicon Mac, check out the mlx branch of this repository for instructions on how to install and use the MLX version of Chronos.

Forecasting

A minimal example showing how to perform forecasting using Chronos models:

# for plotting, run: pip install pandas matplotlib
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import torch
from chronos import ChronosPipeline

pipeline = ChronosPipeline.from_pretrained(
    "amazon/chronos-t5-small",
    device_map="cuda",  # use "cpu" for CPU inference and "mps" for Apple Silicon
    torch_dtype=torch.bfloat16,
)

df = pd.read_csv("https://raw.githubusercontent.com/AileenNielsen/TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv")

# context must be either a 1D tensor, a list of 1D tensors,
# or a left-padded 2D tensor with batch as the first dimension
context = torch.tensor(df["#Passengers"])
prediction_length = 12
forecast = pipeline.predict(
    context,
    prediction_length,
    num_samples=20,
    temperature=1.0,
    top_k=50,
    top_p=1.0,
) # forecast shape: [num_series, num_samples, prediction_length]

# visualize the forecast
forecast_index = range(len(df), len(df) + prediction_length)
low, median, high = np.quantile(forecast[0].numpy(), [0.1, 0.5, 0.9], axis=0)

plt.figure(figsize=(8, 4))
plt.plot(df["#Passengers"], color="royalblue", label="historical data")
plt.plot(forecast_index, median, color="tomato", label="median forecast")
plt.fill_between(forecast_index, low, high, color="tomato", alpha=0.3, label="80% prediction interval")
plt.legend()
plt.grid()
plt.show()

Extracting Encoder Embeddings

A minimal example showing how to extract encoder embeddings from Chronos models:

import pandas as pd
import torch
from chronos import ChronosPipeline

pipeline = ChronosPipeline.from_pretrained(
    "amazon/chronos-t5-small",
    device_map="cuda",
    torch_dtype=torch.bfloat16,
)

df = pd.read_csv("https://raw.githubusercontent.com/AileenNielsen/TimeSeriesAnalysisWithPython/master/data/AirPassengers.csv")

# context must be either a 1D tensor, a list of 1D tensors,
# or a left-padded 2D tensor with batch as the first dimension
context = torch.tensor(df["#Passengers"])
embeddings, tokenizer_state = pipeline.embed(context)

🔥 Coverage

📝 Citation

If you find Chronos models useful for your research, please consider citing the associated paper:

@article{ansari2024chronos,
  author  = {Ansari, Abdul Fatir and Stella, Lorenzo and Turkmen, Caner and Zhang, Xiyuan, and Mercado, Pedro and Shen, Huibin and Shchur, Oleksandr and Rangapuram, Syama Syndar and Pineda Arango, Sebastian and Kapoor, Shubham and Zschiegner, Jasper and Maddix, Danielle C. and Mahoney, Michael W. and Torkkola, Kari and Gordon Wilson, Andrew and Bohlke-Schneider, Michael and Wang, Yuyang},
  title   = {Chronos: Learning the Language of Time Series},
  journal = {arXiv preprint arXiv:2403.07815},
  year    = {2024}
}

🛡️ Security

See CONTRIBUTING for more information.

📃 License

This project is licensed under the Apache-2.0 License.

About

Chronos: Pretrained Models for Time Series Forecasting

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%