Skip to content

refactor: typing module re-organization #57

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Dec 24, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
740 changes: 400 additions & 340 deletions poetry.lock

Large diffs are not rendered by default.

1 change: 0 additions & 1 deletion pydantic_numpy/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@
from pydantic_numpy.helper.annotation import np_array_pydantic_annotated_typing
from pydantic_numpy.typing.n_dimensional import *

__all__ = ["np_array_pydantic_annotated_typing", "model", "typing"]
12 changes: 6 additions & 6 deletions pydantic_numpy/helper/annotation.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
from collections.abc import Sequence
from pathlib import Path
from typing import Any, Callable, ClassVar, Iterable, Optional, Union
from typing import Any, Callable, ClassVar, Iterable, Optional, Union, cast

import numpy as np
import numpy.typing as npt
Expand Down Expand Up @@ -55,12 +55,12 @@ def pd_np_native_numpy_array_to_data_dict_serializer(array_like: npt.ArrayLike)
"""
array = np.array(array_like)

if issubclass(array.dtype.type, np.timedelta64) or issubclass(array.dtype.type, np.datetime64):
data = array.astype(int).tolist()
else:
data = array.astype(float).tolist()
data = array.astype(
int if issubclass(array.dtype.type, np.timedelta64) or issubclass(array.dtype.type, np.datetime64) else float
).tolist()
cast_data = cast(list, data)

return NumpyArrayTypeData(data_type=str(array.dtype), data=data)
return NumpyArrayTypeData(data_type=str(array.dtype), data=cast_data)


def pd_np_native_numpy_array_json_schema_from_type_data(
Expand Down
12 changes: 4 additions & 8 deletions pydantic_numpy/typing/__init__.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,4 @@
from pydantic_numpy.typing.i_dimensional import *
from pydantic_numpy.typing.ii_dimensional import *
from pydantic_numpy.typing.iii_dimensional import *
from pydantic_numpy.typing.n_dimensional import *
from pydantic_numpy.typing.strict_data_type.i_dimensional import *
from pydantic_numpy.typing.strict_data_type.ii_dimensional import *
from pydantic_numpy.typing.strict_data_type.iii_dimensional import *
from pydantic_numpy.typing.strict_data_type.n_dimensional import *
from pydantic_numpy.typing.type_safe.i_dimensional import *
from pydantic_numpy.typing.type_safe.ii_dimensional import *
from pydantic_numpy.typing.type_safe.iii_dimensional import *
from pydantic_numpy.typing.type_safe.n_dimensional import *
Original file line number Diff line number Diff line change
@@ -1,116 +1,122 @@
from typing import Annotated
from typing import Annotated, Any, TypeAlias

import numpy as np

from pydantic_numpy.helper.annotation import NpArrayPydanticAnnotation

NpStrict1DArrayInt64 = Annotated[
Np1DArray: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[Any]],
NpArrayPydanticAnnotation.factory(data_type=None, dimensions=1, strict_data_typing=False),
]

Np1DArrayInt64: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.int64]],
NpArrayPydanticAnnotation.factory(data_type=np.int64, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayInt32 = Annotated[
Np1DArrayInt32: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.int32]],
NpArrayPydanticAnnotation.factory(data_type=np.int32, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayInt16 = Annotated[
Np1DArrayInt16: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.int16]],
NpArrayPydanticAnnotation.factory(data_type=np.int16, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayInt8 = Annotated[
Np1DArrayInt8: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.int8]],
NpArrayPydanticAnnotation.factory(data_type=np.int8, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayUint64 = Annotated[
Np1DArrayUint64: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.uint64]],
NpArrayPydanticAnnotation.factory(data_type=np.uint64, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayUint32 = Annotated[
Np1DArrayUint32: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.uint32]],
NpArrayPydanticAnnotation.factory(data_type=np.uint32, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayUint16 = Annotated[
Np1DArrayUint16: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.uint16]],
NpArrayPydanticAnnotation.factory(data_type=np.uint16, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayUint8 = Annotated[
Np1DArrayUint8: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.uint8]],
NpArrayPydanticAnnotation.factory(data_type=np.uint8, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayFpLongDouble = Annotated[
Np1DArrayFpLongDouble: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.longdouble]],
NpArrayPydanticAnnotation.factory(data_type=np.longdouble, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayFp64 = Annotated[
Np1DArrayFp64: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.float64]],
NpArrayPydanticAnnotation.factory(data_type=np.float64, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayFp32 = Annotated[
Np1DArrayFp32: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.float32]],
NpArrayPydanticAnnotation.factory(data_type=np.float32, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayFp16 = Annotated[
Np1DArrayFp16: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.float16]],
NpArrayPydanticAnnotation.factory(data_type=np.float16, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayComplexLongDouble = Annotated[
Np1DArrayComplexLongDouble: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.clongdouble]],
NpArrayPydanticAnnotation.factory(data_type=np.clongdouble, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayComplex128 = Annotated[
Np1DArrayComplex128: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.complex128]],
NpArrayPydanticAnnotation.factory(data_type=np.complex128, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayComplex64 = Annotated[
Np1DArrayComplex64: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.complex64]],
NpArrayPydanticAnnotation.factory(data_type=np.complex64, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayBool = Annotated[
Np1DArrayBool: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.bool_]],
NpArrayPydanticAnnotation.factory(data_type=np.bool_, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayDatetime64 = Annotated[
Np1DArrayDatetime64: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.datetime64]],
NpArrayPydanticAnnotation.factory(data_type=np.datetime64, dimensions=1, strict_data_typing=True),
]

NpStrict1DArrayTimedelta64 = Annotated[
Np1DArrayTimedelta64: TypeAlias = Annotated[
np.ndarray[tuple[int], np.dtype[np.timedelta64]],
NpArrayPydanticAnnotation.factory(data_type=np.timedelta64, dimensions=1, strict_data_typing=True),
]

__all__ = [
"NpStrict1DArrayInt64",
"NpStrict1DArrayInt32",
"NpStrict1DArrayInt16",
"NpStrict1DArrayInt8",
"NpStrict1DArrayUint64",
"NpStrict1DArrayUint32",
"NpStrict1DArrayUint16",
"NpStrict1DArrayUint8",
"NpStrict1DArrayFpLongDouble",
"NpStrict1DArrayFp64",
"NpStrict1DArrayFp32",
"NpStrict1DArrayFp16",
"NpStrict1DArrayComplexLongDouble",
"NpStrict1DArrayComplex128",
"NpStrict1DArrayComplex64",
"NpStrict1DArrayBool",
"NpStrict1DArrayDatetime64",
"NpStrict1DArrayTimedelta64",
"Np1DArray",
"Np1DArrayInt64",
"Np1DArrayInt32",
"Np1DArrayInt16",
"Np1DArrayInt8",
"Np1DArrayUint64",
"Np1DArrayUint32",
"Np1DArrayUint16",
"Np1DArrayUint8",
"Np1DArrayFpLongDouble",
"Np1DArrayFp64",
"Np1DArrayFp32",
"Np1DArrayFp16",
"Np1DArrayComplexLongDouble",
"Np1DArrayComplex128",
"Np1DArrayComplex64",
"Np1DArrayBool",
"Np1DArrayDatetime64",
"Np1DArrayTimedelta64",
]
Original file line number Diff line number Diff line change
@@ -1,116 +1,122 @@
from typing import Annotated
from typing import Annotated, Any, TypeAlias

import numpy as np

from pydantic_numpy.helper.annotation import NpArrayPydanticAnnotation

NpStrict2DArrayInt64 = Annotated[
Np2DArray: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[Any]],
NpArrayPydanticAnnotation.factory(data_type=None, dimensions=2, strict_data_typing=False),
]

Np2DArrayInt64: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.int64]],
NpArrayPydanticAnnotation.factory(data_type=np.int64, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayInt32 = Annotated[
Np2DArrayInt32: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.int32]],
NpArrayPydanticAnnotation.factory(data_type=np.int32, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayInt16 = Annotated[
Np2DArrayInt16: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.int16]],
NpArrayPydanticAnnotation.factory(data_type=np.int16, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayInt8 = Annotated[
Np2DArrayInt8: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.int8]],
NpArrayPydanticAnnotation.factory(data_type=np.int8, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayUint64 = Annotated[
Np2DArrayUint64: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.uint64]],
NpArrayPydanticAnnotation.factory(data_type=np.uint64, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayUint32 = Annotated[
Np2DArrayUint32: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.uint32]],
NpArrayPydanticAnnotation.factory(data_type=np.uint32, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayUint16 = Annotated[
Np2DArrayUint16: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.uint16]],
NpArrayPydanticAnnotation.factory(data_type=np.uint16, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayUint8 = Annotated[
Np2DArrayUint8: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.uint8]],
NpArrayPydanticAnnotation.factory(data_type=np.uint8, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayFpLongDouble = Annotated[
Np2DArrayFpLongDouble: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.longdouble]],
NpArrayPydanticAnnotation.factory(data_type=np.longdouble, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayFp64 = Annotated[
Np2DArrayFp64: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.float64]],
NpArrayPydanticAnnotation.factory(data_type=np.float64, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayFp32 = Annotated[
Np2DArrayFp32: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.float32]],
NpArrayPydanticAnnotation.factory(data_type=np.float32, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayFp16 = Annotated[
Np2DArrayFp16: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.float16]],
NpArrayPydanticAnnotation.factory(data_type=np.float16, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayComplexLongDouble = Annotated[
Np2DArrayComplexLongDouble: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.clongdouble]],
NpArrayPydanticAnnotation.factory(data_type=np.clongdouble, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayComplex128 = Annotated[
Np2DArrayComplex128: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.complex128]],
NpArrayPydanticAnnotation.factory(data_type=np.complex128, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayComplex64 = Annotated[
Np2DArrayComplex64: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.complex64]],
NpArrayPydanticAnnotation.factory(data_type=np.complex64, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayBool = Annotated[
Np2DArrayBool: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.bool_]],
NpArrayPydanticAnnotation.factory(data_type=np.bool_, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayDatetime64 = Annotated[
Np2DArrayDatetime64: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.datetime64]],
NpArrayPydanticAnnotation.factory(data_type=np.datetime64, dimensions=2, strict_data_typing=True),
]

NpStrict2DArrayTimedelta64 = Annotated[
Np2DArrayTimedelta64: TypeAlias = Annotated[
np.ndarray[tuple[int, int], np.dtype[np.timedelta64]],
NpArrayPydanticAnnotation.factory(data_type=np.timedelta64, dimensions=2, strict_data_typing=True),
]

__all__ = [
"NpStrict2DArrayInt64",
"NpStrict2DArrayInt32",
"NpStrict2DArrayInt16",
"NpStrict2DArrayInt8",
"NpStrict2DArrayUint64",
"NpStrict2DArrayUint32",
"NpStrict2DArrayUint16",
"NpStrict2DArrayUint8",
"NpStrict2DArrayFpLongDouble",
"NpStrict2DArrayFp64",
"NpStrict2DArrayFp32",
"NpStrict2DArrayFp16",
"NpStrict2DArrayComplexLongDouble",
"NpStrict2DArrayComplex128",
"NpStrict2DArrayComplex64",
"NpStrict2DArrayBool",
"NpStrict2DArrayDatetime64",
"NpStrict2DArrayTimedelta64",
"Np2DArray",
"Np2DArrayInt64",
"Np2DArrayInt32",
"Np2DArrayInt16",
"Np2DArrayInt8",
"Np2DArrayUint64",
"Np2DArrayUint32",
"Np2DArrayUint16",
"Np2DArrayUint8",
"Np2DArrayFpLongDouble",
"Np2DArrayFp64",
"Np2DArrayFp32",
"Np2DArrayFp16",
"Np2DArrayComplexLongDouble",
"Np2DArrayComplex128",
"Np2DArrayComplex64",
"Np2DArrayBool",
"Np2DArrayDatetime64",
"Np2DArrayTimedelta64",
]
Loading
Loading