Status: in progress
- LLM
- Prompt Engineering
- AI Assistance for Software Development
- RAG
- Embeddings
Implement a vector storage system using ChromaDB for semantic searches in resumes, develop text segmentation techniques to enhance PDF search capabilities, and create a web application with WebFlow integrating retrieval-augmented generation for analyzing candidate qualifications.
#Crie uma pasta
mkdir .venv
#Crie o ambiente virtual nessa pasta (atenção para a versão do python utilizada)
python -m venv .venv
#Ative o ambiente virtual
source <venv_path>/bin/activate
#mova as dependências instaladas para o arquivo requirement.txt
pip freeze > requirements.txt
#Se existir o arquivo requirement.txt com todas as dependências necessárias, instale no seu ambiente virtual
pip install -r requirements.txt
#Desative o ambiente virtual
deactivate
- Gemini API
#Install the Gemini API SDK
pip install -q -U google-generativeai
#Set up API key
export API_KEY=<YOUR_API_KEY>
#Import the library
import google.generativeai as genai
import os
genai.configure(api_key=os.environ["API_KEY"])
#Make request
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content("Write a story about a magic backpack.")
print(response.text)
Source: https://ai.google.dev/gemini-api/docs/quickstart?lang=python
- Groq API
#Install the Groq Python library
pip install groq
#Set up API key
export GROQ_API_KEY=<your-api-key-here>
#Import the library
import os
from groq import Groq
#Make request
client = Groq(
api_key=os.environ.get("GROQ_API_KEY"),
)
chat_completion = client.chat.completions.create(
messages=[
{
"role": "user",
"content": "Explain the importance of fast language models",
}
],
model="llama3-8b-8192",
)
print(chat_completion.choices[0].message.content)
Source: https://console.groq.com/docs/quickstart
#Install ChromaDB Libray
pip install chromadb