Skip to content

Commit

Permalink
Merge pull request #93 from carpentries-incubator/timings
Browse files Browse the repository at this point in the history
Updates following the EuroBioC workshop
  • Loading branch information
csoneson authored Oct 7, 2023
2 parents 7078373 + a0b04d1 commit 6a72c31
Show file tree
Hide file tree
Showing 5 changed files with 27 additions and 26 deletions.
6 changes: 3 additions & 3 deletions episodes/01-intro-to-rnaseq.Rmd
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
---
source: Rmd
title: Introduction to RNA-seq
teaching: 45
exercises: 30
teaching: 65
exercises: 35
---


Expand Down Expand Up @@ -172,7 +172,7 @@ If you are mapping your reads to the transcriptome, you will instead need a file

## Challenge

Download the latest mouse transcriptome fasta file from GENCODE and uncompress it. What do the entries look like? Tip: to read the file into R, consider the `Biostrings` package.
Download the latest mouse transcriptome fasta file from GENCODE. What do the entries look like? Tip: to read the file into R, consider the `readDNAStringSet()` function from the `Biostrings` package.

::::::::::::::::::::::::::::::::::::::::::::::::::

Expand Down
2 changes: 1 addition & 1 deletion episodes/02-setup.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
source: Rmd
title: RStudio Project and Experimental Data
teaching: 20
exercises: 20
exercises: 10
---

:::::::::::::::::::::::::::::::::::::: questions
Expand Down
4 changes: 2 additions & 2 deletions episodes/03-import-annotate.Rmd
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
---
title: "Importing and annotating quantified data into R"
source: Rmd
teaching: 75
teaching: 80
output:
html_document:
df_print: paged
exercises: 30
exercises: 40
---

```{r setup, echo = FALSE, message = FALSE}
Expand Down
36 changes: 18 additions & 18 deletions episodes/04-exploratory-qc.Rmd
Original file line number Diff line number Diff line change
@@ -1,8 +1,8 @@
---
source: Rmd
title: Exploratory analysis and quality control
teaching: 60
exercises: 45
teaching: 120
exercises: 60
editor_options:
chunk_output_type: console
---
Expand Down Expand Up @@ -237,10 +237,10 @@ levels(vsd_ex$sample) <- c("sampleA", "sampleB", "sampleC",
"sampleD", "sampleE", "sampleF")
vsd_ex$time <- sample(vsd_ex$time)
pcaData <- DESeq2::plotPCA(vsd_ex, intgroup = c("sample", "time"),
returnData = TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(x = PC1, y = PC2)) +
pcaDataEx <- DESeq2::plotPCA(vsd_ex, intgroup = c("sample", "time"),
returnData = TRUE)
percentVar <- round(100 * attr(pcaDataEx, "percentVar"))
ggplot(pcaDataEx, aes(x = PC1, y = PC2)) +
geom_point(aes(color = sample, shape = time), size = 5) +
theme_minimal() +
xlab(paste0("PC1: ", percentVar[1], "% variance")) +
Expand Down Expand Up @@ -279,30 +279,30 @@ Compare before and after variance stabilizing transformation.
::::::::::::::::::::::::::::::::::: solution

```{r pca-lib}
pcaData <- DESeq2::plotPCA(vsd, intgroup = c("libSize"),
returnData = TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(x = PC1, y = PC2)) +
geom_point(aes(color = libSize/ 1e6), size = 5) +
pcaDataVst <- DESeq2::plotPCA(vsd, intgroup = c("libSize"),
returnData = TRUE)
percentVar <- round(100 * attr(pcaDataVst, "percentVar"))
ggplot(pcaDataVst, aes(x = PC1, y = PC2)) +
geom_point(aes(color = libSize / 1e6), size = 5) +
theme_minimal() +
xlab(paste0("PC1: ", percentVar[1], "% variance")) +
ylab(paste0("PC2: ", percentVar[2], "% variance")) +
coord_fixed() +
scale_color_continuous("Total count in millions", type ="viridis")
scale_color_continuous("Total count in millions", type = "viridis")
```


```{r pca-lib-vst}
pcaData <- DESeq2::plotPCA(DESeqTransform(se), intgroup = c("libSize"),
returnData = TRUE)
percentVar <- round(100 * attr(pcaData, "percentVar"))
ggplot(pcaData, aes(x = PC1, y = PC2)) +
geom_point(aes(color = libSize/ 1e6), size = 5) +
pcaDataCts <- DESeq2::plotPCA(DESeqTransform(se), intgroup = c("libSize"),
returnData = TRUE)
percentVar <- round(100 * attr(pcaDataCts, "percentVar"))
ggplot(pcaDataCts, aes(x = PC1, y = PC2)) +
geom_point(aes(color = libSize / 1e6), size = 5) +
theme_minimal() +
xlab(paste0("PC1: ", percentVar[1], "% variance")) +
ylab(paste0("PC2: ", percentVar[2], "% variance")) +
coord_fixed() +
scale_color_continuous("Total count in millions", type ="viridis")
scale_color_continuous("Total count in millions", type = "viridis")
```


Expand Down
5 changes: 3 additions & 2 deletions learners/setup.md
Original file line number Diff line number Diff line change
Expand Up @@ -10,15 +10,16 @@ episode of the [Introduction to data analysis with R and Bioconductor](https://c
Additionally, you will also need to install the following packages that will be used throughout the lesson.

```r
install.packages("BiocManager")
install.packages(c("BiocManager", "remotes"))
BiocManager::install(c("tidyverse", "SummarizedExperiment",
"ExploreModelMatrix", "AnnotationDbi", "org.Hs.eg.db",
"org.Mm.eg.db", "csoneson/ConfoundingExplorer",
"DESeq2", "vsn", "ComplexHeatmap", "hgu95av2.db",
"RColorBrewer", "hexbin", "cowplot", "iSEE",
"clusterProfiler", "enrichplot", "kableExtra",
"msigdbr", "gplots", "ggplot2", "simplifyEnrichment",
"apeglm", "microbenchmark", "Biostrings"))
"apeglm", "microbenchmark", "Biostrings",
"SingleCellExperiment"))

```

Expand Down

0 comments on commit 6a72c31

Please sign in to comment.