Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Addressed #420 and #491 #507

Merged
merged 7 commits into from
Apr 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 11 additions & 6 deletions chainladder/core/display.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,15 @@

class TriangleDisplay:
def __repr__(self):
# try:
# self.values
# except:
# print("Triangle is empty")
# return
try:
self.values
except:
return "Empty Triangle."

if (self.values.shape[0], self.values.shape[1]) == (1, 1):
data = self._repr_format()
return data.to_string()

else:
return self._summary_frame().__repr__()

Expand All @@ -40,6 +40,11 @@

def _repr_html_(self):
"""Jupyter/Ipython HTML representation"""
try:
self.values
except:
return "Triangle is empty."

Check warning on line 46 in chainladder/core/display.py

View check run for this annotation

Codecov / codecov/patch

chainladder/core/display.py#L45-L46

Added lines #L45 - L46 were not covered by tests

if (self.values.shape[0], self.values.shape[1]) == (1, 1):
data = self._repr_format()
fmt_str = self._get_format_str(data)
Expand Down Expand Up @@ -150,7 +155,7 @@
)
output_xnan = re.sub("<td.*nan.*td>", "<td></td>", default_output)
else:
raise ValueError("heatmap only works with single triangles")
raise ValueError("heatmap() only works with a single triangle")

Check warning on line 158 in chainladder/core/display.py

View check run for this annotation

Codecov / codecov/patch

chainladder/core/display.py#L158

Added line #L158 was not covered by tests
if HTML:
return HTML(output_xnan)
elif HTML is None:
Expand Down
13 changes: 13 additions & 0 deletions chainladder/core/tests/test_display.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,16 @@ def test_to_frame(raa):

except:
assert False


def test_labels(xyz):
assert (
xyz.valuation_date.strftime("%Y-%m-%d %H:%M:%S.%f")
== "2008-12-31 23:59:59.999999"
)
assert xyz.origin_grain == "Y"
assert xyz.development_grain == "Y"
assert xyz.shape == (1, 5, 11, 11)
assert xyz.index_label == ["Total"]
assert xyz.columns_label == ["Incurred", "Paid", "Reported", "Closed", "Premium"]
assert xyz.origin_label == ["AccidentYear"]
35 changes: 16 additions & 19 deletions chainladder/core/tests/test_triangle.py
Original file line number Diff line number Diff line change
Expand Up @@ -665,7 +665,7 @@ def test_halfyear_grain():
{"AccMo": [201409, 201503, 201603], "ValMo": [202203] * 3, "value": [100] * 3}
)
assert cl.Triangle(
data=data, origin="AccMo", development="ValMo", columns="value"
data=data, origin="AccMo", development="ValMo", columns="value", cumulative=True
).shape == (1, 1, 16, 1)


Expand Down Expand Up @@ -775,21 +775,18 @@ def test_halfyear_development():
)
) == cl.Triangle

assert (
cl.Triangle(
data=pd.DataFrame(data, columns=["origin", "val_date", "idx", "value"]),
index="idx",
columns="value",
origin="origin",
development="val_date",
cumulative=True,
) ==
cl.Triangle(
data=df_polars,
index="idx",
columns="value",
origin="origin",
development="val_date",
cumulative=True,
)
)
assert cl.Triangle(
data=pd.DataFrame(data, columns=["origin", "val_date", "idx", "value"]),
index="idx",
columns="value",
origin="origin",
development="val_date",
cumulative=True,
) == cl.Triangle(
data=df_polars,
index="idx",
columns="value",
origin="origin",
development="val_date",
cumulative=True,
)
7 changes: 1 addition & 6 deletions chainladder/utils/utility_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,14 +185,11 @@ def parallelogram_olf(
)

rate_changes = pd.Series(np.array(values), np.array(date))
# print("rate_changes:\n", rate_changes)
rate_changes = rate_changes.reindex(date_idx, fill_value=0)
# print("rate_changes:\n", rate_changes)

cum_rate_changes = np.cumprod(1 + rate_changes.values)
cum_rate_changes = pd.Series(cum_rate_changes, rate_changes.index)
# print("cum_rate_changes:\n", cum_rate_changes)
crl = cum_rate_changes[-1]
# print("crl:", crl)

cum_avg_rate_non_leaps = cum_rate_changes
cum_avg_rate_leaps = cum_rate_changes
Expand All @@ -216,8 +213,6 @@ def parallelogram_olf(
cum_avg_rate_leaps = (
cum_avg_rate_leaps + cum_avg_rate_leaps.shift(1).values
) / 2
# print("cum_avg_rate_non_leaps\n", cum_avg_rate_non_leaps)
# print("cum_avg_rate_leaps\n", cum_avg_rate_leaps)

dropdates_num = {
"M": 12,
Expand Down
64 changes: 37 additions & 27 deletions conftest.py
Original file line number Diff line number Diff line change
@@ -1,76 +1,86 @@
import pytest
import chainladder as cl


def pytest_generate_tests(metafunc):
if "raa" in metafunc.fixturenames:
metafunc.parametrize(
"raa", ["normal_run", "sparse_only_run"], indirect=True)
metafunc.parametrize("raa", ["normal_run", "sparse_only_run"], indirect=True)
if "qtr" in metafunc.fixturenames:
metafunc.parametrize(
"qtr", ["normal_run", "sparse_only_run"], indirect=True)
metafunc.parametrize("qtr", ["normal_run", "sparse_only_run"], indirect=True)
if "clrd" in metafunc.fixturenames:
metafunc.parametrize(
"clrd", ["normal_run", "sparse_only_run"], indirect=True)
metafunc.parametrize("clrd", ["normal_run", "sparse_only_run"], indirect=True)
if "genins" in metafunc.fixturenames:
metafunc.parametrize(
"genins", ["normal_run", "sparse_only_run"], indirect=True)
metafunc.parametrize("genins", ["normal_run", "sparse_only_run"], indirect=True)
if "prism_dense" in metafunc.fixturenames:
metafunc.parametrize(
"prism_dense", ["normal_run", "sparse_only_run"], indirect=True)
"prism_dense", ["normal_run", "sparse_only_run"], indirect=True
)
if "prism" in metafunc.fixturenames:
metafunc.parametrize("prism", ["normal_run"], indirect=True)
if "xyz" in metafunc.fixturenames:
metafunc.parametrize("xyz", ["normal_run", "sparse_only_run"], indirect=True)


@pytest.fixture
def raa(request):
if request.param == "sparse_only_run":
cl.options.set_option('ARRAY_BACKEND', 'sparse')
cl.options.set_option("ARRAY_BACKEND", "sparse")
else:
cl.options.set_option('ARRAY_BACKEND', 'numpy')
return cl.load_sample('raa')
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("raa")


@pytest.fixture
def qtr(request):
if request.param == "sparse_only_run":
cl.options.set_option('ARRAY_BACKEND', 'sparse')
cl.options.set_option("ARRAY_BACKEND", "sparse")
else:
cl.options.set_option('ARRAY_BACKEND', 'numpy')
return cl.load_sample('quarterly')
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("quarterly")


@pytest.fixture
def clrd(request):
if request.param == "sparse_only_run":
cl.options.set_option('ARRAY_BACKEND', 'sparse')
cl.options.set_option("ARRAY_BACKEND", "sparse")
else:
cl.options.set_option('ARRAY_BACKEND', 'numpy')
return cl.load_sample('clrd')
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("clrd")


@pytest.fixture
def genins(request):
if request.param == "sparse_only_run":
cl.options.set_option('ARRAY_BACKEND', 'sparse')
cl.options.set_option("ARRAY_BACKEND", "sparse")
else:
cl.options.set_option('ARRAY_BACKEND', 'numpy')
return cl.load_sample('genins')
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("genins")


@pytest.fixture
def prism(request):
cl.options.set_option('ARRAY_BACKEND', 'numpy')
return cl.load_sample('prism')
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("prism")


@pytest.fixture
def prism_dense(request):
if request.param == "sparse_only_run":
cl.options.set_option('ARRAY_BACKEND', 'sparse')
cl.options.set_option("ARRAY_BACKEND", "sparse")
else:
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("prism").sum()


@pytest.fixture
def xyz(request):
if request.param == "sparse_only_run":
cl.options.set_option("ARRAY_BACKEND", "sparse")
else:
cl.options.set_option('ARRAY_BACKEND', 'numpy')
return cl.load_sample('prism').sum()
cl.options.set_option("ARRAY_BACKEND", "numpy")
return cl.load_sample("xyz")


@pytest.fixture
def atol(): return 1e-4
def atol():
return 1e-4
1 change: 1 addition & 0 deletions environment-dev.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ dependencies:

- pandas
- polars
- polars-lts-cpu
- scikit-learn
- sparse
- numba
Expand Down
Loading