Skip to content

Commit

Permalink
Add test_inference_utils, test_loss_utils, test_data_utils and mypy
Browse files Browse the repository at this point in the history
checks
  • Loading branch information
Ruruthia committed Sep 27, 2024
1 parent 74baf71 commit df7b539
Show file tree
Hide file tree
Showing 4 changed files with 208 additions and 0 deletions.
5 changes: 5 additions & 0 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -36,3 +36,8 @@ jobs:
- name: Test with pytest
run: |
docker run --rm cvdm-package:${{ matrix.python-version }} pytest
# Step 5: Run the container and execute tests using mypy
- name: Test with mypy
run: |
docker run --rm cvdm-package:${{ matrix.python-version }} mypy .
57 changes: 57 additions & 0 deletions tests/test_data_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
import unittest

import cv2
import numpy as np
from PIL import Image

from cvdm.utils.data_utils import (
center_crop,
obtain_noisy_sample,
read_and_patch_image_from_filename,
)


class TestImageProcessing(unittest.TestCase):

def setUp(self):
# This method will run before each test
# Create a sample random image (300x300) with 3 color channels
self.sample_image = np.random.randint(0, 256, (300, 300, 3), dtype=np.uint8)

def test_read_and_patch_image_from_filename(self):
# Test resizing when image is smaller than im_size
im_size = 400

# Convert the sample image to a format that the function can accept
cv2.imwrite("test_image.jpg", self.sample_image) # Temporarily save for testing
patched_image = read_and_patch_image_from_filename("test_image.jpg", im_size)
self.assertEqual(patched_image.size, (im_size, im_size))

# Test extracting patches when image is larger than im_size
im_size = 100
patched_image = read_and_patch_image_from_filename("test_image.jpg", im_size)
self.assertEqual(patched_image.size, (im_size, im_size))

def test_center_crop(self):
# Use the random image created in setUp
crop_size = 2048

# Create a larger dummy image for cropping
larger_dummy_image = np.random.rand(3000, 3000, 3).astype(np.float32)
cropped_image = center_crop(larger_dummy_image, crop_size)

# Check if the cropped image has the expected size
self.assertEqual(cropped_image.shape, (crop_size, crop_size, 3))

def test_obtain_noisy_sample(self):
# Create a dummy input for testing
x = [
np.random.rand(256, 256, 3).astype(np.float32),
np.array(0.5, dtype=np.float32),
]
samples = obtain_noisy_sample(x)

# Check that the output is as expected
self.assertEqual(len(samples), 4)
for sample in samples:
self.assertEqual(sample.shape, (256, 256, 3))
107 changes: 107 additions & 0 deletions tests/test_inference_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
import unittest

import numpy as np
from tensorflow.keras.layers import Dense, Input, Sequential

from cvdm.utils.inference_utils import (
create_output_montage,
ddpm_obtain_sr_img,
log_loss,
log_metrics,
obtain_output_montage_and_metrics,
save_output_montage,
save_weights,
)


class TestDDPMFunctions(unittest.TestCase):

def setUp(self):
# Set up test parameters and models
self.x = np.random.rand(1, 256, 256, 3).astype(np.float32) # Random input
self.y = np.random.rand(1, 256, 256, 3).astype(np.float32) # Random target
self.timesteps_test = 10

# Simple noise model and schedule model for testing
self.noise_model = self._create_simple_model()
self.schedule_model = self._create_simple_model()
self.mu_model = self._create_simple_model() # Optional model

self.output_shape = (1, 256, 256, 3) # Example output shape

def _create_simple_model(self):
# Create a simple model for testing
model = Sequential(
[
Input(shape=(None, None, 3)), # Flexible input shape
Dense(3, activation="sigmoid"), # Output must match expected shape
]
)
return model

def test_ddpm_obtain_sr_img(self):
pred_diff, gamma_vec, alpha_vec = ddpm_obtain_sr_img(
self.x,
self.timesteps_test,
self.noise_model,
self.schedule_model,
self.mu_model,
out_shape=self.output_shape,
)
self.assertEqual(pred_diff.shape, self.output_shape)
self.assertEqual(gamma_vec.shape, self.output_shape + (self.timesteps_test,))
self.assertEqual(alpha_vec.shape, self.output_shape + (self.timesteps_test,))

def test_create_output_montage(self):
pred_y = np.random.rand(1, 256, 256, 3)
gamma_vec = np.random.rand(1, 256, 256, 10) # Random gamma vector
output_image = create_output_montage(pred_y, gamma_vec, self.y, self.x)

# Check the output shape of the montage image
self.assertEqual(output_image.ndim, 3) # Ensure it is a 3D image
self.assertGreater(output_image.shape[0], 0) # Check it has some height
self.assertGreater(output_image.shape[1], 0) # Check it has some width

def test_log_loss(self):
# Check if logging loss does not raise any errors
avg_loss = np.array([0.1, 0.2, 0.3, 0.4, 0.5]) # Example loss values
log_loss(None, avg_loss, "test_prefix") # Should print without errors

def test_log_metrics(self):
# Test logging metrics
metrics_dict = {"accuracy": 0.9, "loss": 0.1}
log_metrics(None, metrics_dict, "test_prefix") # Should print without errors

def test_save_weights(self):
# Check if saving weights does not raise any errors
try:
save_weights(
None, self.noise_model, self.mu_model, 1, "test_path", "test_run_id"
)
except Exception as e:
self.fail(f"save_weights raised an exception: {e}")

def test_save_output_montage(self):
# Check if saving output montage does not raise any errors
output_montage = np.random.rand(256, 256, 3)
try:
save_output_montage(
None, output_montage, 1, "test_path", "test_run_id", "test_prefix"
)
except Exception as e:
self.fail(f"save_output_montage raised an exception: {e}")

def test_obtain_output_montage_and_metrics(self):
output_montage, metrics = obtain_output_montage_and_metrics(
self.x,
self.y,
self.noise_model,
self.schedule_model,
self.mu_model,
self.timesteps_test,
diff_inp=True,
task="imagenet_sr",
)

self.assertEqual(output_montage.shape, (256, 256, 3)) # Check output shape
self.assertIsInstance(metrics, dict) # Ensure metrics is a dictionary
39 changes: 39 additions & 0 deletions tests/test_loss_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,39 @@
import unittest

import numpy as np
import tensorflow as tf

from cvdm.utils.loss_utils import linear_loss, normal_kl


class TestLossFunctions(unittest.TestCase):

def test_normal_kl(self):
# Test with known values
data = [1.0, np.log(2.0), 2.0, np.log(3.0)] # mean1, logvar1, mean2, logvar2
expected_kl = 0.5 * (
-1.0
+ np.log(3.0)
- np.log(2.0)
+ np.exp(np.log(2.0) - np.log(3.0))
+ ((1.0 - 2.0) ** 2) * np.exp(-np.log(3.0))
)

# Compute KL divergence
result = normal_kl(data)

# Validate the result
self.assertAlmostEqual(result.numpy(), expected_kl, places=5)

def test_linear_loss(self):
# Create test tensors
y_true = tf.constant([1.0, 2.0, 3.0])
y_pred = tf.constant([1.5, 2.5, 3.5])

# Compute linear loss
result = linear_loss(y_true, y_pred)

# Validate the result
tf.debugging.assert_equal(
result, y_pred, message="The linear loss should return y_pred."
)

0 comments on commit df7b539

Please sign in to comment.