Update macOS_on_demand.yml #147
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# A GitHub Action to demonstrate how to run SciPy on Python 3.13 before its release in Oct. 2024 | |
name: scipy_on_py3_13 | |
on: | |
push: | |
pull_request: | |
workflow_dispatch: | |
jobs: | |
scipy_on_py3_13: | |
strategy: | |
fail-fast: false | |
matrix: | |
# https://docs.scipy.org/doc/scipy-1.13.0/building/index.html#building-from-source | |
os: [macos-latest, ubuntu-latest] # , windows-latest] | |
runs-on: ${{ matrix.os }} | |
steps: | |
- run: gfortran --version || true | |
- run: gfortran -v || true | |
- uses: actions/checkout@v4 | |
- uses: actions/setup-python@v5 | |
with: | |
python-version: 3.13 | |
allow-prereleases: true | |
- if: runner.os == 'Linux' # https://github.com/scipy/scipy/issues/16308#issuecomment-1140477372 | |
run: | | |
sudo apt-get update -qq | |
sudo apt-get install --yes libopenblas-dev | |
- if: runner.os == 'macOS' | |
env: | |
LDFLAGS: "-L/opt/homebrew/opt/openblas/lib" | |
CPPFLAGS: "-I/opt/homebrew/opt/openblas/include" | |
PKG_CONFIG_PATH: "/opt/homebrew/opt/openblas/lib/pkgconfig" | |
# LDFLAGS: "-L/usr/local/opt/openblas/lib" | |
# CPPFLAGS: "-I/usr/local/opt/openblas/include" | |
# PKG_CONFIG_PATH: "/usr/local/opt/openblas/lib/pkgconfig" | |
run: | | |
env | |
echo "---" | |
brew shellenv | |
echo "PATH: $PATH" | |
echo "HOMEBREW_PREFIX: $HOMEBREW_PREFIX | |
echo "LDFLAGS: $LDFLAGS | |
echo "CPPFLAGS: $CPPFLAGS | |
echo "PKG_CONFIG_PATH: $PKG_CONFIG_PATH | |
echo ${{ env.PATH }} | |
echo ${{ env.HOMEBREW_PREFIX }} | |
brew install openblas | |
brew install gfortran | |
gfortran --version || true | |
gfortran -v || true | |
pip install scipy | |
- name: Install dependencies | |
run: | | |
pip install --upgrade pip | |
pip install scipy | |
# Some packages that depend on SciPy | |
pip install scikit-learn statsmodels xgboost |