Skip to content
/ ConFrag Public

Official Repository for our NeurIPS2024 paper: Sample Selection via Contrastive Fragmentation for Noisy Label Regression

License

Notifications You must be signed in to change notification settings

cdjkim/ConFrag

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Sample Selection via Contrastive Fragmentation for Noisy Label Regression

This repository contains the official PyTorch implementation for our ICCV2021 paper.

[Paper Link]

System Dependencies

  • Python >= 3.9
  • CUDA >= 9.0 supported GPU

Installation

Using virtual env is recommended.

# create conda env with python=3.9
conda create -n {ENV_NAME} python=3.9

conda activate {ENV_NAME}

# install required version of torch and torchvision
pip install -f https://download.pytorch.org/whl/torch_stable.html torch==1.13.1+cu116 torchvision==0.14.1+cu116

# install other packages
pip install -r requirements.txt

Preparation

Log directory set-up

Create checkpoints directory for logging.

$ ln -s [log directory path] checkpoints

Data set-up:

  1. Download data.zip from here.
  2. Decompress into ./data.

Run

Specify parameters in config yaml, episodes yaml files.

python main.py --log-dir [log directory path] --config [config file path] --episode [episode file path] --override "|" --random_seed [seed]

Example of ConFrag IMDB-clean-bal run

python main.py --config=configs/imdb_fragment.yaml --episode=episodes/imdb-split4.yaml --log-dir=checkpoints/imdb/dfragment/imdb_clean_bal --random_seed=[seed]

Citation

The code and dataset are free to use for academic purposes only. If you use any of the material in this repository as part of your work, we ask you to cite:

@inproceedings{kim-NeurIPS-2024,
    author    = {Chris Dongjoo Kim and Sangwoo Moon and Jihwan Moon and Dongyeon Woo and Gunhee Kim},
    title     = "{Sample Selection via Contrastive Fragmentation for Noisy Label Regression}"
    booktitle = {NeurIPS},
    year      = 2024
}

About

Official Repository for our NeurIPS2024 paper: Sample Selection via Contrastive Fragmentation for Noisy Label Regression

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages