-
Notifications
You must be signed in to change notification settings - Fork 1
Home
Andor J Kiss edited this page Jan 16, 2022
·
6 revisions
Welcome to the GPU-Bioinformatics wiki!
https://github.com/cement-head/GPU-Bioinformatics/wiki/List-of-GPU-Bioinformatics-Papers
- Brunn, M., Himthani, N., Biros, G., Mehl, M. & Mang, A. Fast GPU 3D diffeomorphic image registration. J. Parallel Distrib. Comput. 149, 149–162 (2021). URL: https://peerj.com/articles/808
- Bae, J., Jeon, H. & Kim, M.-S. GPrimer: a fast GPU-based pipeline for primer design for qPCR experiments. BMC Bioinformatics 22, 220 (2021). URL: https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-021-04133-4
- Zhu, M., Kang, K. & Ning, K. Meta-Prism: Ultra-fast and highly accurate microbial community structure search utilizing dual indexing and parallel computation. Brief. Bioinform. (2020) doi:10.1093/bib/bbaa009. URL: https://doi.org/10.1093/bib/bbaa009
- Payne, A. et al. Readfish enables targeted nanopore sequencing of gigabase-sized genomes. Nat. Biotechnol. (2020) URL: http://dx.doi.org/10.1038/s41587-020-00746-x.
- Feldbauer, R. et al. DeepNOG: Fast and accurate protein orthologous group assignment. Bioinformatics (2020) doi:10.1093/bioinformatics/btaa1051. URL: https://doi.org/10.1093/bioinformatics/btaa1051
- Cavicchioli, R., Hu, J. C., Loli Piccolomini, E., Morotti, E. & Zanni, L. GPU acceleration of a model-based iterative method for Digital Breast Tomosynthesis. Sci. Rep. 10, 43 (2020). URL: https://doi.org/10.1038/s41598-019-56920-y
- Roels, J. et al. An interactive ImageJ plugin for semi-automated image denoising in electron microscopy. Nat. Commun. 11, 771 (2020). URL: https://doi.org/10.1038/s41467-020-14529-0
- Ahmed, N. et al. GASAL2: a GPU accelerated sequence alignment library for high-throughput NGS data. BMC Bioinformatics 20, 520 (2019). URL: https://doi.org/10.1186/s12859-019-3086-9
- Ayres, D. L. et al. BEAGLE 3: Improved Performance, Scaling, and Usability for a High-Performance Computing Library for Statistical Phylogenetics. Syst. Biol. 68, 1052–1061 (2019). URL: https://doi.org/10.1093/sysbio/syz020
- Haase, R. et al. CLIJ: GPU-accelerated image processing for everyone. Nat. Methods (2019) doi:10.1038/s41592-019-0650-1. URL: https://doi.org/10.1038/s41592-019-0650-1
- Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comput. Biol. 15, e1006650 (2019). URL: https://doi.org/10.1371/journal.pcbi.1006650
- Jia, B. et al. GLAPD: Whole Genome Based LAMP Primer Design for a Set of Target Genomes. Front. Microbiol. 10, 2860 (2019). URL: https://www.frontiersin.org/article/10.3389/fmicb.2019.02860
- Santander-Jiménez, S., Vega-Rodríguez, M. A., Vicente-Viola, J. & Sousa, L. Comparative assessment of GPGPU technologies to accelerate objective functions: A case study on parsimony. J. Parallel Distrib. Comput. 126, 67–81 (2019). URL: https://linkinghub.elsevier.com/retrieve/pii/S0743731518304350
- Czech, E., Aksoy, B. A., Aksoy, P. & Hammerbacher, J. Cytokit: a single-cell analysis toolkit for high dimensional fluorescent microscopy imaging. BMC Bioinformatics 20, 448 (2019). URL: https://doi.org/10.1186/s12859-019-3055-3
- Fang, C.-H., Theera-Ampornpunt, N., Roth, M. A., Grama, A. & Chaterji, S. AIKYATAN: mapping distal regulatory elements using convolutional learning on GPU. BMC Bioinformatics 20, 488 (2019). URL: https://doi.org/10.1186/s12859-019-3049-1
- Swiercz, A. et al. GRASShopPER—An algorithm for de novo assembly based on GPU alignments. PLoS One 13, e0202355 (2018). URL: https://dx.plos.org/10.1371/journal.pone.0202355
- Kobus, R., Hundt, C., Müller, A. & Schmidt, B. Accelerating metagenomic read classification on CUDA-enabled GPUs. BMC Bioinformatics 18, 11 (2017). URL: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1434-6
- Tristão Ramos, R. J. et al. CrocoBLAST: Running BLAST efficiently in the age of next-generation sequencing. Bioinformatics 33, 3648–3651 (2017). URL: https://doi.org/10.1093/bioinformatics/btx465
- Houtgast, E. J., Sima, V.-M., Bertels, K. & Al-Ars, Z. GPU-Accelerated BWA-MEM Genomic Mapping Algorithm Using Adaptive Load Balancing. in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (ed. Hannig, F.) vol. 9637 130–142 (ARCS, 2016). URL: http://link.springer.com/10.1007/978-3-319-30695-7_10
- Suzuki, S., Kakuta, M., Ishida, T. & Akiyama, Y. GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering. PLoS One 11, e0157338–e0157338 (2016). URL: http://advances.sciencemag.org/lookup/doi/10.1126/sciadv.1501860
- Manconi, A., Moscatelli, M., Gnocchi, M., Armano, G. & Milanesi, L. A GPU-based high performance computing infrastructure for specialized NGS analyses. PeerJ Prepr. 4–6 (2016) doi:10.7287/peerj.preprints.2175. URL: https://peerj.com/preprints/2175/
- Nobile, M. S., Cazzaniga, P., Tangherloni, A. & Besozzi, D. Graphics processing units in bioinformatics, computational biology and systems biology. Brief. Bioinform. 18, bbw058 (2016). URL: http://dx.doi.org/10.1093/bib/bbw058
- Zhou, C., Lang, X., Wang, Y. & Zhu, C. gPGA: GPU Accelerated Population Genetics Analyses. PLoS One 10, e0135028 (2015). URL: https://doi.org/10.1371/journal.pone.0135028
- Wilton, R. et al. Arioc: high-throughput read alignment with GPU-accelerated exploration of the seed-and-extend search space. PeerJ 3, e808 (2015). URL: https://peerj.com/articles/808
- O’Driscoll, A. et al. HBLAST: Parallelised sequence similarity – A Hadoop MapReducable basic local alignment search tool. J. Biomed. Inform. 54, 58–64 (2015). URL: https://www.sciencedirect.com/science/article/pii/S1532046415000106
- Zhao, K. & Chu, X. G-BLASTN: accelerating nucleotide alignment by graphics processors. Bioinformatics 30, 1384–1391 (2014).
- Heo, Y., Wu, X., Chen, D., Ma, J. & Hwu, W. BLESS: Bloom filter-based error correction solution for high-throughput sequencing reads. Bioinformatics 30, 1354–1362 (2014). URL: https://doi.org/10.1093/bioinformatics/btu047
- Ling, C. et al. MrBayes tgMC3: A Tight GPU Implementation of MrBayes. PLoS One 8, e60667 (2013). URL: https://doi.org/10.1371/journal.pone.0060667
- Wang, H., Rahnamayan, S. & Wu, Z. Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. J. Parallel Distrib. Comput. 73, 62–73 (2013). URL: http://dx.doi.org/10.1016/j.jpdc.2012.02.019
- Brodtkorb, A. R., Hagen, T. R. & Sætra, M. L. Graphics processing unit (GPU) programming strategies and trends in GPU computing. J. Parallel Distrib. Comput. 73, 4–13 (2013). URL: https://www.sciencedirect.com/science/article/pii/S0743731512000998
- Talbi, E.-G. & Hasle, G. Metaheuristics on GPUs. J. Parallel Distrib. Comput. 73, 1–3 (2013). URL: https://linkinghub.elsevier.com/retrieve/pii/S0743731512002298
- Pinel, F., Dorronsoro, B. & Bouvry, P. Solving very large instances of the scheduling of independent tasks problem on the GPU. J. Parallel Distrib. Comput. 73, 101–110 (2013). URL: http://www.sciencedirect.com/science/article/pii/S0743731512000627
- Augusto, D. A. & Barbosa, H. J. C. Accelerated parallel genetic programming tree evaluation with OpenCL. J. Parallel Distrib. Comput. 73, 86–100 (2013). URL: http://www.sciencedirect.com/science/article/pii/S074373151200024X
- Blazewicz, J., Frohmberg, W., Kierzynka, M. & Wojciechowski, P. G-MSA - A GPU-based, fast and accurate algorithm for multiple sequence alignment. J. Parallel Distrib. Comput. 73, 32–41 (2013). URL: http://dx.doi.org/10.1016/j.jpdc.2012.04.004
- Suzuki, S., Ishida, T., Kurokawa, K. & Akiyama, Y. GHOSTM: A GPU-Accelerated Homology Search Tool for Metagenomics. PLoS One 7, e36060 (2012). URL: https://doi.org/10.1371/journal.pone.0036060
- Vouzis, P. D. & Sahinidis, N. V. GPU-BLAST: Using graphics processors to accelerate protein sequence alignment. Bioinformatics 27, 182–188 (2011). URL: https://academic.oup.com/bioinformatics/article/27/2/182/285951
- Ling, C. & Benkrid, K. Design and implementation of a CUDA-compatible GPU-based core for gapped BLAST algorithm. Procedia Comput. Sci. 1, 495–504 (2010). URL: https://www.sciencedirect.com/science/article/pii/S1877050910000542
- Sfiligoi, I., McDonald, D. & Knight, R. Enabling microbiome research on personal devices. in 2021 IEEE 17th International Conference on eScience (eScience) 229–230 (IEEE, 2021). doi:10.1109/eScience51609.2021.00035. URL: https://ieeexplore.ieee.org/document/9582377 GitHub Repo: https://github.com/biocore/unifrac
- Oh, M. & Zhang, L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci. Reports 2020 101 10, 1–9 (2020). URL: https://www.nature.com/articles/s41598-020-63159-5
- Su, X., Wang, X., Jing, G. & Ning, K. GPU-Meta-Storms: computing the structure similarities among massive amount of microbial community samples using GPU. Bioinformatics 30, 1031–1033 (2014). URL: https://academic.oup.com/bioinformatics/article/30/7/1031/235324
- Oh, M. & Zhang, L. DeepMicro: deep representation learning for disease prediction based on microbiome data. Sci. Reports 2020 101 10, 1–9 (2020). URL: https://www.nature.com/articles/s41598-020-63159-5
- Langdon, W. B., Lam, B. Y. H., Petke, J. & Harman, M. Improving CUDA DNA Analysis Software with Genetic Programming. in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation 1063–1070 (ACM, 2015). doi:10.1145/2739480.2754652.URL:https://dl.acm.org/doi/10.1145/2739480.2754652 BarraCUDA Project: http://seqbarracuda.sourceforge.net/index.html
- Repository of GPU based sequence aligners - both nucleotide and protein, for multiple sequence alignment and for NGS. URL: http://gpualign.cs.put.poznan.pl/index.html
- Reddy S, Hung L-H, Sala-Torra O, Radich JP, Yeung CC, Yeung KY. 2021. A graphical, interactive and GPU-enabled workflow to process long-read sequencing data. BMC Genomics 22:626. URL: https://doi.org/10.1186/s12864-021-07927-1
- Margelevičius M. 2020. COMER2: GPU-accelerated sensitive and specific homology searches. Bioinformatics 36:3570–3572. URL:https://dx.doi.org/10.1093/bioinformatics/btaa185
- Sreenivasan V, Kumar S, Pestilli F, Talukdar P, Sridharan D. 2022. GPU-accelerated connectome discovery at scale. Nat Comput Sci 2:298–306. URL:https://www.nature.com/articles/s43588-022-00250-z