-
Notifications
You must be signed in to change notification settings - Fork 5.7k
最佳实践
- 在默认的配置文件中,我们提供了以下模型组合
LLM: Chatglm2-6b
Embedding Models: m3e-base
TextSplitter: ChineseRecursiveTextSplitter
Kb_dataset: faiss
- 我们推荐开发者根据自己的业务需求进行模型微调,如果不需要微调且配置充足,可选择以下性能较好的配置
model_config.py
LLM: Qwen-14B-Chat 或 Baichuan2-13B-Chat
Embedding Models: piccolo-large-zh 或 bge-large-zh-v1.5
HISTORY_LEN = 20
TEMPERATURE = 0.1
使用该模型将需要更高的硬件要求
1张 RTX A6000 或者 A40 等 48GB 显存以上的显卡。推荐 1 x A100 以上。
(使用多张显卡拼接也能运行,但是速度非常慢,2张4090拼接运行大概为一秒一个字的速度)
64GB 内存用于加载模型而不被Kill
服务器级的CPU,推荐 Xeon(R) Platinum 8358P 以上
-
如果开发者知识库较大,有大量文档,大文件,我们推荐开发者使用
pg
向量数据库 -
如果开发者的知识库具有一定的关键词特征,例如:
- 问答对文件(以Q + A 为一个组合的json文件)
- Markdown文件
- 并排的pdf文件
- 具有多个表格的pdf文件
我们推荐开发者自行开发分词器,以达到更好的效果。
-
如果开发者想使用更全面的 Agent 功能,我们推荐开发者使用以下配置
LLM: Qwen-14B-Chat, AgentLM-70B 或 GPT-4
Tools 的工具控制在10个之内
本项目基于 FastChat 加载 LLM 服务,故需以 FastChat 加载 PEFT 路径,针对chatglm,falcon,codet5p以外的模型,以及非p-tuning以外的peft方法,需对peft文件进行修改,步骤如下:
- 将config.json文件修改为adapter_config.json;
- 保证文件夹包含pytorch_model.bin文件;
- 修改文件夹名称,保证文件夹包含'peft'一词;
- 将peft文件夹移入项目目录下;
- 确保adapter_config.json文件夹中base_model_name_or_path指向基础模型;
- 将peft路径添加到model_config.py的llm_dict中,键为模型名,值为peft路径,注意使用相对路径,如"peft";
- 开启
PEFT_SHARE_BASE_WEIGHTS=true
环境变量,再执行python startup.py -a
针对p-tuning和chatglm模型,需要对fastchat进行较大幅度的修改。
P-tuning虽然是一种peft方法,但并不能于huggingface的peft python包兼容,而fastchat在多处以字符串匹配的方式进行硬编码加载模型,因此导致fastchat和chatchat不能兼容p-tuning,经langchain-chatchat开发组多次尝试,给出如下指南进行p-tuning加载。
-
将config.json文件修改为adapter_config.json;
-
保证文件夹包含pytorch_model.bin文件;
-
修改文件夹名称,保证文件夹包含'peft'一词;
-
在adapter_config.json文件中增加如下字段:
"base_model_name_or_path": "/root/model/chatglm2-6b/" "task_type": "CAUSAL_LM", "peft_type": "PREFIX_TUNING", "inference_mode": true, "revision": "main", "num_virtual_tokens": 16
其中,"base_model_name_or_path"为基础模型的存在位置;
-
将文件夹移入项目文件夹中,如Langchain-Chatchat项目文件夹目录下;
-
将fastchat.model.model_adapter.py文件的load_model函数修改为:
def load_model( model_path: str, device: str = "cuda", num_gpus: int = 1, max_gpu_memory: Optional[str] = None, dtype: Optional[torch.dtype] = None, load_8bit: bool = False, cpu_offloading: bool = False, gptq_config: Optional[GptqConfig] = None, awq_config: Optional[AWQConfig] = None, revision: str = "main", debug: bool = False, load_kwargs = {} ): """Load a model from Hugging Face.""" # get model adapter adapter = get_model_adapter(model_path) kwargs = load_kwargs # Handle device mapping cpu_offloading = raise_warning_for_incompatible_cpu_offloading_configuration( device, load_8bit, cpu_offloading ) if device == "cpu": kwargs["torch_dtype"]= torch.float32 if CPU_ISA in ["avx512_bf16", "amx"]: try: import intel_extension_for_pytorch as ipex kwargs ["torch_dtype"]= torch.bfloat16 except ImportError: warnings.warn( "Intel Extension for PyTorch is not installed, it can be installed to accelerate cpu inference" ) elif device == "cuda": kwargs["torch_dtype"] = torch.float16 if num_gpus != 1: kwargs["device_map"] = "auto" if max_gpu_memory is None: kwargs[ "device_map" ] = "sequential" # This is important for not the same VRAM sizes available_gpu_memory = get_gpu_memory(num_gpus) kwargs["max_memory"] = { i: str(int(available_gpu_memory[i] * 0.85)) + "GiB" for i in range(num_gpus) } else: kwargs["max_memory"] = {i: max_gpu_memory for i in range(num_gpus)} elif device == "mps": kwargs["torch_dtype"] = torch.float16 # Avoid bugs in mps backend by not using in-place operations. replace_llama_attn_with_non_inplace_operations() elif device == "xpu": kwargs["torch_dtype"] = torch.bfloat16 # Try to load ipex, while it looks unused, it links into torch for xpu support try: import intel_extension_for_pytorch as ipex except ImportError: warnings.warn( "Intel Extension for PyTorch is not installed, but is required for xpu inference." ) elif device == "npu": kwargs["torch_dtype"]= torch.float16 # Try to load ipex, while it looks unused, it links into torch for xpu support try: import torch_npu except ImportError: warnings.warn("Ascend Extension for PyTorch is not installed.") else: raise ValueError(f"Invalid device: {device}") if cpu_offloading: # raises an error on incompatible platforms from transformers import BitsAndBytesConfig if "max_memory" in kwargs: kwargs["max_memory"]["cpu"] = ( str(math.floor(psutil.virtual_memory().available / 2**20)) + "Mib" ) kwargs["quantization_config"] = BitsAndBytesConfig( load_in_8bit_fp32_cpu_offload=cpu_offloading ) kwargs["load_in_8bit"] = load_8bit elif load_8bit: if num_gpus != 1: warnings.warn( "8-bit quantization is not supported for multi-gpu inference." ) else: model, tokenizer = adapter.load_compress_model( model_path=model_path, device=device, torch_dtype=kwargs["torch_dtype"], revision=revision, ) if debug: print(model) return model, tokenizer elif awq_config and awq_config.wbits < 16: assert ( awq_config.wbits == 4 ), "Currently we only support 4-bit inference for AWQ." model, tokenizer = load_awq_quantized(model_path, awq_config, device) if num_gpus != 1: device_map = accelerate.infer_auto_device_map( model, max_memory=kwargs["max_memory"], no_split_module_classes=[ "OPTDecoderLayer", "LlamaDecoderLayer", "BloomBlock", "MPTBlock", "DecoderLayer", ], ) model = accelerate.dispatch_model( model, device_map=device_map, offload_buffers=True ) else: model.to(device) return model, tokenizer elif gptq_config and gptq_config.wbits < 16: model, tokenizer = load_gptq_quantized(model_path, gptq_config) if num_gpus != 1: device_map = accelerate.infer_auto_device_map( model, max_memory=kwargs["max_memory"], no_split_module_classes=["LlamaDecoderLayer"], ) model = accelerate.dispatch_model( model, device_map=device_map, offload_buffers=True ) else: model.to(device) return model, tokenizer kwargs["revision"] = revision if dtype is not None: # Overwrite dtype if it is provided in the arguments. kwargs["torch_dtype"] = dtype # Load model model, tokenizer = adapter.load_model(model_path, kwargs) if ( device == "cpu" and kwargs["torch_dtype"] is torch.bfloat16 and CPU_ISA is not None ): model = ipex.optimize(model, dtype=kwargs["torch_dtype"]) if (device == "cuda" and num_gpus == 1 and not cpu_offloading) or device in ( "mps", "xpu", "npu", ): model.to(device) if device == "xpu": model = torch.xpu.optimize(model, dtype=kwargs["torch_dtype"], inplace=True) if debug: print(model) return model, tokenizer
-
将fastchat.model.model_adapter.py的函数修改为:
def get_generate_stream_function(model: torch.nn.Module, model_path: str): """Get the generate_stream function for inference.""" from fastchat.serve.inference import generate_stream model_type = str(type(model)).lower() is_chatglm = "chatglm" in model_type is_falcon = "rwforcausallm" in model_type is_codet5p = "codet5p" in model_type is_peft = "peft" in model_type if is_chatglm: return generate_stream_chatglm elif is_falcon: return generate_stream_falcon elif is_codet5p: return generate_stream_codet5p elif peft_share_base_weights and is_peft: # Return a curried stream function that loads the right adapter # according to the model_name available in this context. This ensures # the right weights are available. @torch.inference_mode() def generate_stream_peft( model, tokenizer, params: Dict, device: str, context_len: int, stream_interval: int = 2, judge_sent_end: bool = False, ): model.set_adapter(model_path) if "chatglm" in str(type(model.base_model)).lower(): model.disable_adapter() prefix_state_dict = torch.load(os.path.join(model_path, "pytorch_model.bin")) new_prefix_state_dict = {} for k, v in prefix_state_dict.items(): if k.startswith("transformer.prefix_encoder."): new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v elif k.startswith("transformer.prompt_encoder."): new_prefix_state_dict[k[len("transformer.prompt_encoder."):]] = v model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict) for x in generate_stream_chatglm( model, tokenizer, params, device, context_len, stream_interval, judge_sent_end, ): yield x elif "rwforcausallm" in str(type(model.base_model)).lower(): for x in generate_stream_falcon( model, tokenizer, params, device, context_len, stream_interval, judge_sent_end, ): yield x elif "codet5p" in str(type(model.base_model)).lower(): for x in generate_stream_codet5p( model, tokenizer, params, device, context_len, stream_interval, judge_sent_end, ): yield x else: for x in generate_stream( model, tokenizer, params, device, context_len, stream_interval, judge_sent_end, ): yield x return generate_stream_peft else: return generate_stream
-
将fastchat.model.model_adapter.py的PeftModelAdapter类的load_model方法修改为:
def load_model(self, model_path: str, from_pretrained_kwargs: dict): """Loads the base model then the (peft) adapter weights""" from peft import PeftConfig, PeftModel config = PeftConfig.from_pretrained(model_path) base_model_path = config.base_model_name_or_path if "peft" in base_model_path: raise ValueError( f"PeftModelAdapter cannot load a base model with 'peft' in the name: {config.base_model_name_or_path}" ) # Basic proof of concept for loading peft adapters that share the base # weights. This is pretty messy because Peft re-writes the underlying # base model and internally stores a map of adapter layers. # So, to make this work we: # 1. Cache the first peft model loaded for a given base models. # 2. Call `load_model` for any follow on Peft models. # 3. Make sure we load the adapters by the model_path. Why? This is # what's accessible during inference time. # 4. In get_generate_stream_function, make sure we load the right # adapter before doing inference. This *should* be safe when calls # are blocked the same semaphore. if peft_share_base_weights: if base_model_path in peft_model_cache: model, tokenizer = peft_model_cache[base_model_path] # Super important: make sure we use model_path as the # `adapter_name`. model.load_adapter(model_path, adapter_name=model_path) else: base_adapter = get_model_adapter(base_model_path) base_model, tokenizer = base_adapter.load_model( base_model_path, from_pretrained_kwargs ) # Super important: make sure we use model_path as the # `adapter_name`. from peft import get_peft_model model = get_peft_model(base_model,config,adapter_name=model_path) peft_model_cache[base_model_path] = (model, tokenizer) return model, tokenizer # In the normal case, load up the base model weights again. base_adapter = get_model_adapter(base_model_path) base_model, tokenizer = base_adapter.load_model( base_model_path, from_pretrained_kwargs ) from peft import get_peft_model model = get_peft_model(base_model,config,adapter_name=model_path) return model, tokenizer
-
将fastchat.model.model_adapter.py的ChatglmAdapter类的load_model方法修改为:
def load_model(self, model_path: str, from_pretrained_kwargs: dict): revision = from_pretrained_kwargs.get("revision", "main") tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True, revision=revision ) config = AutoConfig.from_pretrained(model_path, trust_remote_code=True,**from_pretrained_kwargs) model = AutoModel.from_pretrained( model_path, trust_remote_code=True, config=config ) return model, tokenizer
-
将fastchat.serve.model_worker文件的ModelWorker的__init__方法修改如下:
class ModelWorker(BaseModelWorker): def __init__( self, controller_addr: str, worker_addr: str, worker_id: str, model_path: str, model_names: List[str], limit_worker_concurrency: int, no_register: bool, device: str, num_gpus: int, max_gpu_memory: str, dtype: Optional[torch.dtype] = None, load_8bit: bool = False, cpu_offloading: bool = False, gptq_config: Optional[GptqConfig] = None, awq_config: Optional[AWQConfig] = None, stream_interval: int = 2, conv_template: Optional[str] = None, embed_in_truncate: bool = False, seed: Optional[int] = None, load_kwargs = {}, #修改点 **kwargs, ): super().__init__( controller_addr, worker_addr, worker_id, model_path, model_names, limit_worker_concurrency, conv_template=conv_template, ) logger.info(f"Loading the model {self.model_names} on worker {worker_id} ...") self.model, self.tokenizer = load_model( model_path, device=device, num_gpus=num_gpus, max_gpu_memory=max_gpu_memory, dtype=dtype, load_8bit=load_8bit, cpu_offloading=cpu_offloading, gptq_config=gptq_config, awq_config=awq_config, load_kwargs=load_kwargs #修改点 ) self.device = device if self.tokenizer.pad_token == None: self.tokenizer.pad_token = self.tokenizer.eos_token self.context_len = get_context_length(self.model.config) print("**"*100) self.generate_stream_func = get_generate_stream_function(self.model, model_path) print(f"self.generate_stream_func{self.generate_stream_func}") print("*"*100) self.stream_interval = stream_interval self.embed_in_truncate = embed_in_truncate self.seed = seed if not no_register: self.init_heart_beat()
-
在fastchat.serve.model_worker文件的create_model_worker增加如下args参数:
parser.add_argument("--load_kwargs",type=dict,default={})
并将如下语句:
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
dtype=str_to_torch_dtype(args.dtype),
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
seed=args.seed,
)
修改为:
worker = ModelWorker(
args.controller_address,
args.worker_address,
worker_id,
args.model_path,
args.model_names,
args.limit_worker_concurrency,
no_register=args.no_register,
device=args.device,
num_gpus=args.num_gpus,
max_gpu_memory=args.max_gpu_memory,
dtype=str_to_torch_dtype(args.dtype),
load_8bit=args.load_8bit,
cpu_offloading=args.cpu_offloading,
gptq_config=gptq_config,
awq_config=awq_config,
stream_interval=args.stream_interval,
conv_template=args.conv_template,
embed_in_truncate=args.embed_in_truncate,
seed=args.seed,
load_kwargs=args.load_kwargs
)
至此,我们完成了fastchat加载ptuning的所有修改,在调用fastchat加载p-tuning时,可以通过加入 PEFT_SHARE_BASE_WEIGHTS=true
,并以字典的形式添加--load_kwargs参数为训练ptuning时的pre_seq_len值即可,例如将2.2.2步骤中的 parser.add_argument("--load_kwargs",type=dict,default={})
修改为:
parser.add_argument("--load_kwargs",type=dict,default={"pre_seq_len":16})
-
在configs/serve_config.py中的FSCHAT_MODEL_WORKERS字典中增加如下字段:
"load_kwargs": {"pre_seq_len": 16} #值修改为adapter_config.json中的pre_seq_len值
-
将startup.py中的create_model_worker_app修改为:
def create_model_worker_app(log_level: str = "INFO", **kwargs) -> FastAPI: """ kwargs包含的字段如下: host: port: model_names:[`model_name`] controller_address: worker_address: 对于online_api: online_api:True worker_class: `provider` 对于离线模型: model_path: `model_name_or_path`,huggingface的repo-id或本地路径 device:`LLM_DEVICE` """ import fastchat.constants fastchat.constants.LOGDIR = LOG_PATH from fastchat.serve.model_worker import worker_id, logger import argparse logger.setLevel(log_level) parser = argparse.ArgumentParser() args = parser.parse_args([]) for k, v in kwargs.items(): setattr(args, k, v) # 在线模型API if worker_class := kwargs.get("worker_class"): from fastchat.serve.model_worker import app worker = worker_class(model_names=args.model_names, controller_addr=args.controller_address, worker_addr=args.worker_address) sys.modules["fastchat.serve.model_worker"].worker = worker # 本地模型 else: from configs.model_config import VLLM_MODEL_DICT if kwargs["model_names"][0] in VLLM_MODEL_DICT and args.infer_turbo == "vllm": import fastchat.serve.vllm_worker from fastchat.serve.vllm_worker import VLLMWorker,app from vllm import AsyncLLMEngine from vllm.engine.arg_utils import AsyncEngineArgs,EngineArgs args.tokenizer = args.model_path # 如果tokenizer与model_path不一致在此处添加 args.tokenizer_mode = 'auto' args.trust_remote_code= True args.download_dir= None args.load_format = 'auto' args.dtype = 'auto' args.seed = 0 args.worker_use_ray = False args.pipeline_parallel_size = 1 args.tensor_parallel_size = 1 args.block_size = 16 args.swap_space = 4 # GiB args.gpu_memory_utilization = 0.90 args.max_num_batched_tokens = 2560 args.max_num_seqs = 256 args.disable_log_stats = False args.conv_template = None args.limit_worker_concurrency = 5 args.no_register = False args.num_gpus = 1 # vllm worker的切分是tensor并行,这里填写显卡的数量 args.engine_use_ray = False args.disable_log_requests = False if args.model_path: args.model = args.model_path if args.num_gpus > 1: args.tensor_parallel_size = args.num_gpus for k, v in kwargs.items(): setattr(args, k, v) engine_args = AsyncEngineArgs.from_cli_args(args) engine = AsyncLLMEngine.from_engine_args(engine_args) worker = VLLMWorker( controller_addr = args.controller_address, worker_addr = args.worker_address, worker_id = worker_id, model_path = args.model_path, model_names = args.model_names, limit_worker_concurrency = args.limit_worker_concurrency, no_register = args.no_register, llm_engine = engine, conv_template = args.conv_template, ) sys.modules["fastchat.serve.vllm_worker"].engine = engine sys.modules["fastchat.serve.vllm_worker"].worker = worker else: from fastchat.serve.model_worker import app, GptqConfig, AWQConfig, ModelWorker args.gpus = "0" # GPU的编号,如果有多个GPU,可以设置为"0,1,2,3" args.max_gpu_memory = "20GiB" args.num_gpus = 1 # model worker的切分是model并行,这里填写显卡的数量 args.load_8bit = False args.cpu_offloading = None args.gptq_ckpt = None args.gptq_wbits = 16 args.gptq_groupsize = -1 args.gptq_act_order = False args.awq_ckpt = None args.awq_wbits = 16 args.awq_groupsize = -1 args.model_names = [] args.conv_template = None args.limit_worker_concurrency = 5 args.stream_interval = 2 args.no_register = False args.embed_in_truncate = False args.load_kwargs = {"pre_seq_len": 16} # 改************************* for k, v in kwargs.items(): setattr(args, k, v) if args.gpus: if args.num_gpus is None: args.num_gpus = len(args.gpus.split(',')) if len(args.gpus.split(",")) < args.num_gpus: raise ValueError( f"Larger --num-gpus ({args.num_gpus}) than --gpus {args.gpus}!" ) os.environ["CUDA_VISIBLE_DEVICES"] = args.gpus gptq_config = GptqConfig( ckpt=args.gptq_ckpt or args.model_path, wbits=args.gptq_wbits, groupsize=args.gptq_groupsize, act_order=args.gptq_act_order, ) awq_config = AWQConfig( ckpt=args.awq_ckpt or args.model_path, wbits=args.awq_wbits, groupsize=args.awq_groupsize, ) worker = ModelWorker( controller_addr=args.controller_address, worker_addr=args.worker_address, worker_id=worker_id, model_path=args.model_path, model_names=args.model_names, limit_worker_concurrency=args.limit_worker_concurrency, no_register=args.no_register, device=args.device, num_gpus=args.num_gpus, max_gpu_memory=args.max_gpu_memory, load_8bit=args.load_8bit, cpu_offloading=args.cpu_offloading, gptq_config=gptq_config, awq_config=awq_config, stream_interval=args.stream_interval, conv_template=args.conv_template, embed_in_truncate=args.embed_in_truncate, load_kwargs=args.load_kwargs #改************************* ) sys.modules["fastchat.serve.model_worker"].args = args sys.modules["fastchat.serve.model_worker"].gptq_config = gptq_config sys.modules["fastchat.serve.model_worker"].worker = worker MakeFastAPIOffline(app) app.title = f"FastChat LLM Server ({args.model_names[0]})" app._worker = worker return app
至此,我们完成了langchain-chatchat加载p-tuning的全部操作,将ptuing的路径添加到model_config的llm_dict,如
chatglm2-6b: 'p-tuning-peft'
即可以如下方式加载p-tuning:
PEFT_SHARE_BASE_WEIGHTS=true python startup.py -a
在载入知识库文件的时候,直接上传文档虽然能实现基础的问答,但是,其效果并不能发挥到最佳水平。因此,我们建议开发者对知识库文件做出以下的预处理。 以下方式的预处理如果执行了,有概率提升模型的召回率。
例如,以下段落应该被处理成如下内容后在嵌入知识库,会有更好的效果。
原文: PDF类型
查特查特团队荣获AGI Playground Hackathon黑客松“生产力工具的新想象”赛道季军
2023年10月16日, Founder Park在近日结束的AGI Playground Hackathon黑客松比赛中,查特查特团队展现出色的实力,荣获了“生产力工具的新想象”赛道季军。本次比赛由Founder Park主办,并由智谱、Dify、Zilliz、声网、AWS云服务等企业协办。
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。比赛规定,所有参赛选手必须在短短的48小时内完成一个应用产品开发,同时要求使用智谱大模型及Zilliz向量数据库进行开发。
查特查特团队的现场参赛人员由两名项目成员组成:
来自A大学的小明负责了Agent旅游助手的开发、场地协调以及团队住宿和行程的安排;在保证团队完赛上做出了主要贡献。作为队长,栋宇坚持自信,创新,沉着的精神,不断提出改进方案并抓紧落实,遇到相关问题积极请教老师,提高了团队开发效率。
作为核心开发者的B公司小蓝,他则主管Agent智能知识库查询开发、Agent底层框架设计、相关API调整和UI调整。在最后,他代表团队在规定的时间内呈现了产品的特点和优势,并完美的展示了产品demo。为团队最终产品能够得到奖项做出了重要贡献。
修改后的Markdown文件,具有更高的召回率
# 查特查特团队荣获AGI Playground Hackathon黑客松“生产力工具的新想象”赛道季军。
## 报道简介
2023年10月16日, Founder Park在近日结束的AGI Playground Hackathon黑客松比赛中,查特查特团队展现出色的实力,荣获了“生产力工具的新想象”赛道季军。本次比赛由Founder Park主办,并由智谱、Dify、Zilliz、声网、AWS云服务等企业协办。
## 比赛介绍
比赛吸引了120多支参赛团队,最终有36支队伍进入决赛,其中34支队伍成功完成了路演。比赛规定,所有参赛选手必须在短短的48小时内完成一个应用产品开发,同时要求使用智谱大模型及Zilliz向量数据库进行开发。
## 获奖队员简介
+ 小明,A大学
+ 负责Agent旅游助手的开发、场地协调以及团队住宿和行程的安排
+ 在保证团队完赛上做出了主要贡献。作为队长,栋宇坚持自信,创新,沉着的精神,不断提出改进方案并抓紧落实,遇到相关问题积极请教老师,提高了团队开发效率。
+ 小蓝,B公司
+ 主管Agent智能知识库查询开发、Agent底层框架设计、相关API调整和UI调整。
+ 代表团队在规定的时间内呈现了产品的特点和优势,并完美的展示了产品demo。
就像人类寻找相关点一样,如果在多份文件中存在相似的内容,可能会导致模型无法准确的搜索到相关内容。 因此,需要减少文件中相似的内容,或将其分在不同的知识库中。 例如,以下两个句子中,如果搜索外籍教师,则具有歧义,非常容易搜索到错误答案。
文件一:
在大数据专业中,我们已经拥有超过1/3的外籍博士和教师。
文件二:
本专业具有40%的外籍教师比例,
本专业有博士生10人,研究生12人。
知识库中应该减少具有歧义的句子和段落,或者汉语的高级用法,例如
1. 他说他会杀了那个人。
2. 你说啥子?
3. 我喜欢你的头发。
4. 地板真的滑,我差点没摔倒。
在相似度模型对比的时候,仅仅能搜索句子的表面意思,因此,使用有歧义的句子和段落可能导致搜索错误。
- 上传知识库的单个文件不建议超过5MB,以免出现向量化中断卡死等情况。同时,上传大文件不要使用faiss数据库。
- 减少上传文件中的中文符号,特殊符号,无意义空格等。
1.首先准备一个关键字的文本文件,每一行是一个关键字。例如:
文件key_words.txt:
iphone13pro
中石油
- 配置kb_config.py
EMBEDDING_KEYWORD_FILE = "embedding_keywords.txt"
- 运行
embeddings/add_embedding_keywords.py
输入的文本(这里只是一个没分隔的一串字符):iphone13pro
生成的token id序列:[101, 21128, 102]
token到token id的映射:
[CLS]->101
iphone13pro->21128
[SEP]->102
输入的文本:中石油
生成的token id序列:[101, 21129, 102]
token到token id的映射:
[CLS]->101
中石油->21129
[SEP]->102
这样,你就获得了一个新的带有关键词调整的Embedding模型
在这里,我们放置了一些成功调用的效果图,方便开发者进行查看自己是否成功运行了框架。
在WebUI界面上传知识库,则必须保证知识库进行向量化,成功之后,文件会被切分并在向量位置打钩。 下图展示了成功上传知识库的画面
请确保所有知识库都已经进行了向量化。
若打开webui后,在该模式下能成功跟大模型对话即成功调用。
下图为成功调用LLM的效果图:
若成功调用知识库,则你应该能看到,在大模型回答的下方有一个知识库匹配结果
的展开框,并且内部显示了相关的匹配结果。
如果没有搜索到相关内容,则会提示根据已知信息无法回答问题
,并且下拉框中没有任何内容。
下图为成功调用知识库效果图:
在这个案例中,第一次用户的提问无法在知识库中寻找到合适的答案,因此,大模型回答了根据已知信息无法回答问题
。
第二次用户的提问能在知识库中寻找到合适的答案,因此,大模型给出了一个正确的回答。
注意: 知识库的搜索情况取决于嵌入模型的准度,分词器的设置,知识库的排版和大模型的数量,提示词设定等多个因素。因此,需要开发者进行深度的优化和调试。
若成功调用Agent工具,则你应该看到大模型完整的思维过程,这会在思考过程
下拉框中显示出来。如果成功调用Agent工具,则你应该看到Markdown引用效果的工具使用情况。
在Agent对话模式中,思考过程
中显示的是大模型的思考过程,而下拉框之前的内容为大模型的Final Answer
,缺乏中间的运算过程。
下图展现了一个成功调用Agent工具的效果图:
本框架支持模型连续掉用多个Agent工具,下图展示了一个一个提问中大模型连续调用多个Agent工具的效果图:
在这个案例中,3900
是大模型的最终答案,其余都是思考过程。