Skip to content

Insuranceqa Corpus in Chinese for Machine Learning

Compare
Choose a tag to compare
@hailiang-wang hailiang-wang released this 28 Jul 02:09
· 8 commits to master since this release

insuranceqa-corpus-zh

保险行业语料库

Welcome

该语料库包含从网站Insurance Library 收集的问题和答案。

据我们所知,这是保险领域首个开放的QA语料库:

  • 该语料库的内容由现实世界的用户提出,高质量的答案由具有深度领域知识的专业人士提供。 所以这是一个具有真正价值的语料,而不是玩具。

  • 在上述论文中,语料库用于答复选择任务。 另一方面,这种语料库的其他用法也是可能的。 例如,通过阅读理解答案,观察学习等自主学习,使系统能够最终拿出自己的看不见的问题的答案。

欢迎任何进一步增加此数据集的想法。

语料数据

- 问题 答案 词汇(英语)
训练 12,889 21,325 107,889
验证 2,000 3354 16,931
测试 2,000 3308 16,815

每条数据包括问题的中文,英文,答案的正例,答案的负例。案的正例至少1项,基本上在1-5条,都是正确答案。答案的负例有200条,负例根据问题使用检索的方式建立,所以和问题是相关的,但却不是正确答案。

{
    "INDEX": {
        "zh": "中文",
        "en": "英文",
        "domain": "保险种类",
        "answers": [""] # 答案正例列表
        "negatives": [""] # 答案负例列表
    },
    more ...
}
  • 训练:corpus/train.json

  • 验证:corpus/valid.json

  • 测试:corpus/test.json

  • 答案:corpus/answers.json
    一共有 27,413 个回答,数据格式为 json:

{
    "INDEX": {
        "zh": "中文",
        "en": "英文"
    },
    more ...
}

中英文对照文件

问答对

格式 INDEX ++$++ 保险种类 ++$++ 中文 ++$++ 英文

corpus/train.txt, corpus/valid.txt, corpus/test.txt.

答案

格式 INDEX ++$++ 中文 ++$++ 英文

corpus/answers.txt

快速开始

在Python环境中,使用pip安装

兼容py2, py3

pip install --upgrade insuranceqa_data

加载数据对象

import insuranceqa_data as insuranceqa
train_data = insuranceqa.load_train()
test_data = insuranceqa.load_train()
valid_data = insuranceqa.load_train()

# valid_data, test_data and train_data share the same properties
for x in train_data:
    print('index %s value: %s ++$++ %s ++$++ %s' % \
     (x, d[x]['zh'], d[x]['en'], d[x]['answers'], d[x]['negatives']))

answers_data = insuranceqa.load_answers()
for x in answers_data:
    print('index %s: %s ++$++ %s' % (x, d[x]['zh'], d[x]['en']))

声明

声明1 : insuranceqa-corpus-zh

本数据集使用翻译 insuranceQA而生成,代码发布证书 GPL 3.0。数据仅限于研究用途,如果在发布的任何媒体、期刊、杂志或博客等内容时,必须注明引用和地址。

InsuranceQA Corpus, Hai Liang Wang, https://github.com/Samurais/insuranceqa-corpus-zh, 07 27, 2017

任何基于insuranceqa-corpus衍生的数据也需要开放并需要声明和“声明1”和“声明2”一致的内容。

声明2 : insuranceQA

此数据集仅作为研究目的提供。如果您使用这些数据发表任何内容,请引用我们的论文:Applying Deep Learning to Answer Selection: A Study and An Open Task。Minwei Feng, Bing Xiang, Michael R. Glass, Lidan Wang, Bowen Zhou @ 2015