Skip to content
/ DeepNER Public
forked from z814081807/DeepNER

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

Notifications You must be signed in to change notification settings

chizhu/DeepNER

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chinese-DeepNER-Pytorch

天池中药说明书实体识别挑战冠军方案开源

贡献者:

zxx飞翔的鱼: https://github.com/z814081807

我是蛋糕王:https://github.com/WuHuRestaurant

数青峰:https://github.com/zchaizju

后续官方开放数据集后DeepNER项目会进行优化升级,包含完整的数据处理、训练、验证、测试、部署流程,提供详细的代码注释、模型介绍、实验结果,提供更普适的基于预训练的中文命名实体识别方案,开箱即用,欢迎Star!

(代码框架基于pytorch and transformers, 框架复用性、解耦性、易读性较高,很容易修改迁移至其他NLP任务中)

环境

python3.7
pytorch==1.6.0 +
transformers==2.10.0
pytorch-crf==0.7.2

项目目录说明

DeepNER
│
├── data                                    # 数据文件夹
│   ├── mid_data                            # 存放一些中间数据
│   │   ├── crf_ent2id.json                 # crf 模型的 schema
│   │   └── span_ent2id.json                # span 模型的 schema
│   │   └── mrc_ent2id.json                 # mrc 模型的 schema
│
│   ├── raw_data                            # 转换后的数据
│   │   ├── dev.json                        # 转换后的验证集
│   │   ├── test.json                       # 转换后的初赛测试集
│   │   ├── pseudo.json                     # 转换后的半监督数据
│   │   ├── stack.json                      # 转换后的全体数据
│   └── └── train.json                      # 转换后的训练集
│
├── out                                     # 存放训练好的模型
│   ├── ...           
│   └── ...                                      
│
├── src
│   ├── preprocess                  
│   │   ├── convert_raw_data.py             # 处理转换原始数据
│   │   └── processor.py                    # 转换数据为 Bert 模型的输入
│   ├── utils                      
│   │   ├── attack_train_utils.py           # 对抗训练 FGM / PGD
│   │   ├── dataset_utils.py                # torch Dataset
│   │   ├── evaluator.py                    # 模型评估
│   │   ├── functions_utils.py              # 跨文件调用的一些 functions
│   │   ├── model_utils.py                  # Span & CRF & MRC model (pytorch)
│   │   ├── options.py                      # 命令行参数|   └── trainer.py                      # 训练器
|
├── competition_predict.py                  # 复赛数据推理并提交
├── README.md                               # ...
├── convert_test_data.py                    # 将复赛 test 转化成 json 格式
├── run.sh                                  # 运行脚本
└── main.py                                 # main 函数 (主要用于训练/评估)

使用说明

预训练使用说明

数据转换

注:已提供转换好的数据 无需运行

python src/preprocessing/convert_raw_data.py

训练阶段

bash run.sh

注:脚本中指定的 BERT_DIR 指BERT所在文件夹,需要把 BERT 下载到指定文件夹中

BERT-CRF模型训练
task_type='crf'
mode='train' or 'stack'  train:单模训练与验证stack:5折训练与验证

swa_start: swa 模型权重平均开始的 epoch
attack_train'pgd' / 'fgm' / '' 对抗训练 fgm 训练速度慢一倍, pgd 慢两倍pgd 本次数据集效果明显
BERT-SPAN模型训练
task_type='span'
mode同上
attack_train: 同上
loss_type: 'ce'交叉熵; 'ls_ce'label_smooth; 'focal': focal loss
BERT-MRC模型训练
task_type='mrc'
mode同上
attack_train: 同上
loss_type: 同上

预测复赛 test 文件 (上述模型训练完成后)

注:暂无数据运行,等待官方数据开源后可运行

# convert_test_data
python convert_test_data.py
# predict
python competition_predict.py

赛题背景

任务描述

人工智能加速了中医药领域的传承创新发展,其中中医药文本的信息抽取部分是构建中医药知识图谱的核心部分,为上层应用如临床辅助诊疗系统的构建(CDSS)等奠定了基础。本次NER挑战需要抽取中药药品说明书中的关键信息,包括药品、药物成分、疾病、症状、证候等13类实体,构建中医药药品知识库。

数据探索分析

本次竞赛训练数据有三个特点:

  • 中药药品说明书以长文本居多

- 医疗场景下的标注样本不足

- 标签分布不平衡

核心思路

数据预处理

首先对说明书文本进行预清洗与长文本切分。预清洗部分对无效字符进行过滤。针对长文本问题,采用两级文本切分的策略。切分后的句子可能过短,将短文本归并,使得归并后的文本长度不超过设置的最大长度。此外,利用全部标注数据构造实体知识库,作为领域先验词典。

Baseline: BERT-CRF

  • Baseline 细节
    • 预训练模型:选用 UER-large-24 layer[1],UER在RoBerta-wwm 框架下采用大规模优质中文语料继续训练,CLUE 任务中单模第一
    • 差分学习率:BERT层学习率2e-5;其他层学习率2e-3
    • 参数初始化:模型其他模块与BERT采用相同的初始化方式
    • 滑动参数平均:加权平均最后几个epoch模型的权重,得到更加平滑和表现更优的模型
  • Baseline bad-case分析

优化1:对抗训练

  • 动机:采用对抗训练缓解模型鲁棒性差的问题,提升模型泛化能力
  • 对抗训练是一种引入噪声的训练方式,可以对参数进行正则化,提升模型鲁棒性和泛化能力
    • Fast Gradient Method (FGM):对embedding层在梯度方向添加扰动
    • Projected Gradient Descent (PGD) [2]:迭代扰动,每次扰动被投影到规定范围内

优化2:混合精度训练(FP16)

  • 动机:对抗训练降低了计算效率,使用混合精度训练优化训练耗时
  • 混合精度训练
    • 在内存中用FP16做存储和乘法来加速
    • 用FP32做累加避免舍入误差
  • 损失放大
    • 反向传播前扩大2^k倍loss,防止loss下溢出
    • 反向传播后将权重梯度还原

优化3:多模型融合

  • 动机:baseline 错误集中于歧义性错误,采用多级医学命名实体识别系统以消除歧义性

  • 方法:差异化多级模型融合系统

    • 模型框架差异化:BERT-CRF & BERT-SPAN & BERT-MRC
    • 训练数据差异化:更换随机种子、更换句子切分长度(256、512)
    • 多级模型融合策略
  • 融合模型1——BERT-SPAN

    • 采用SPAN指针的形式替代CRF模块,加快训练速度
    • 以半指针-半标注的结构预测实体的起始位置,同时标注过程中给出实体类别
    • 采用严格解码形式,重叠实体选取logits最大的一个,保证准确率
    • 使用label smooth缓解过拟合问题

  • 融合模型2——BERT-MRC
    • 基于阅读理解的方式处理NER任务
      • query:实体类型的描述来作为query
      • doc:分句后的原始文本作为doc
    • 针对每一种类型构造一个样本,训练时有大量负样本,可以随机选取30%加入训练,其余丢弃,保证效率
    • 预测时对每一类都需构造一次样本,对解码输出不做限制,保证召回率
    • 使用label smooth缓解过拟合问题
    • MRC在本次数据集上精度表现不佳,且训练和推理效率较低,仅作为提升召回率的方案,提供代码仅供学习,不推荐日常使用

  • 多级融合策略
    • CRF/SPAN/MRC 5折交叉验证得到的模型进行第一级概率融合,将 logits 平均后解码实体
    • CRF/SPAN/MRC 概率融合后的模型进行第二级投票融合,获取最终结果

优化4:半监督学习

  • 动机:为了缓解医疗场景下的标注语料稀缺的问题, 我们使用半监督学习(伪标签)充分利用未标注的500条初赛测试集
  • 策略:动态伪标签
    • 首先使用原始标注数据训练一个基准模型M
    • 使用基准模型M对初赛测试集进行预测得到伪标签
    • 将伪标签加入训练集,赋予伪标签一个动态可学习权重(图中alpha),加入真实标签数据中共同训练得到模型M’

- tips:使用多模融合的基准模型减少伪标签的噪音;权重也可以固定,选取需多尝试哪个效果好,本质上是降低伪标签的loss权重,是缓解伪标签噪音的一种方法。

其他无明显提升的尝试方案

  • 取BERT后四层动态加权输出,无明显提升
  • BERT 输出后加上BiLSTM / IDCNN 模块,过拟合严重,训练速度大大降低
  • 数据增强,对同类实体词进行随机替换,以扩充训练数据
  • BERT-SPAN / MRC 模型采用focal loss / dice loss 等缓解标签不平衡
  • 利用构造的领域词典修正模型输出

最终线上成绩72.90%,复赛Rank 1,决赛Rank 1

Ref

[1] Zhao et al., UER: An Open-Source Toolkit for Pre-training Models, EMNLP-IJCNLP, 2019. [2] Madry et al., Towards Deep Learning Models Resistant to Adversarial Attacks, ICLR, 2018.

About

天池中药说明书实体识别挑战冠军方案;中文命名实体识别;NER; BERT-CRF & BERT-SPAN & BERT-MRC;Pytorch

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Shell 0.7%