-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f866e73
commit 9927788
Showing
7 changed files
with
1,006 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,343 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "464ba769", | ||
"metadata": {}, | ||
"source": [ | ||
"## Convolutional Neural Networks and Computer Vision with PyTorch" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 18, | ||
"id": "b831898b", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"import pathlib\n", | ||
"import torch\n", | ||
"from torch import nn\n", | ||
"from torch.utils.data import DataLoader, Dataset\n", | ||
"from torchvision import datasets, transforms" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 19, | ||
"id": "0cda9a43", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'2.1.0+cpu'" | ||
] | ||
}, | ||
"execution_count": 19, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"torch.__version__" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 20, | ||
"id": "f8298624", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'cpu'" | ||
] | ||
}, | ||
"execution_count": 20, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n", | ||
"device" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "32d64866", | ||
"metadata": {}, | ||
"source": [ | ||
"### 1. Data preparation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 21, | ||
"id": "96999cfb", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_dir, test_dir = \"data/pizza_steak_sushi/train\", \"data/pizza_steak_sushi/test\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 22, | ||
"id": "d912a4a7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"data_transform = transforms.Compose([\n", | ||
" transforms.Resize(size = (64, 64)),\n", | ||
" transforms.RandomHorizontalFlip(p = 0.5),\n", | ||
" transforms.ToTensor()\n", | ||
"])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 23, | ||
"id": "66ce4314", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Train data:\n", | ||
"Dataset ImageFolder\n", | ||
" Number of datapoints: 225\n", | ||
" Root location: data/pizza_steak_sushi/train\n", | ||
" StandardTransform\n", | ||
"Transform: Compose(\n", | ||
" Resize(size=(64, 64), interpolation=bilinear, max_size=None, antialias=warn)\n", | ||
" RandomHorizontalFlip(p=0.5)\n", | ||
" ToTensor()\n", | ||
" )\n", | ||
"Test data:\n", | ||
"Dataset ImageFolder\n", | ||
" Number of datapoints: 75\n", | ||
" Root location: data/pizza_steak_sushi/test\n", | ||
" StandardTransform\n", | ||
"Transform: Compose(\n", | ||
" Resize(size=(64, 64), interpolation=bilinear, max_size=None, antialias=warn)\n", | ||
" RandomHorizontalFlip(p=0.5)\n", | ||
" ToTensor()\n", | ||
" )\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"train_data = datasets.ImageFolder(root = train_dir,\n", | ||
" transform = data_transform,\n", | ||
" target_transform = None)\n", | ||
"\n", | ||
"test_data = datasets.ImageFolder(root = test_dir, \n", | ||
" transform = data_transform)\n", | ||
"\n", | ||
"print(f\"Train data:\\n{train_data}\\nTest data:\\n{test_data}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 24, | ||
"id": "a1224c74", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"['pizza', 'steak', 'sushi']" | ||
] | ||
}, | ||
"execution_count": 24, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"class_name = train_data.classes\n", | ||
"class_name" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 25, | ||
"id": "1a3df960", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'pizza': 0, 'steak': 1, 'sushi': 2}" | ||
] | ||
}, | ||
"execution_count": 25, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"class_dict = train_data.class_to_idx\n", | ||
"class_dict" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 26, | ||
"id": "2d203c6c", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(225, 75)" | ||
] | ||
}, | ||
"execution_count": 26, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"len(train_data), len(test_data)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 27, | ||
"id": "71c80d09", | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Image tensor:\n", | ||
"tensor([[[0.1137, 0.1020, 0.0980, ..., 0.1255, 0.1216, 0.1176],\n", | ||
" [0.1059, 0.0980, 0.0980, ..., 0.1294, 0.1294, 0.1294],\n", | ||
" [0.1020, 0.0980, 0.0941, ..., 0.1333, 0.1333, 0.1333],\n", | ||
" ...,\n", | ||
" [0.1098, 0.1098, 0.1255, ..., 0.1686, 0.1647, 0.1686],\n", | ||
" [0.0902, 0.0941, 0.1098, ..., 0.1686, 0.1647, 0.1686],\n", | ||
" [0.0863, 0.0863, 0.0980, ..., 0.1686, 0.1647, 0.1647]],\n", | ||
"\n", | ||
" [[0.0745, 0.0706, 0.0745, ..., 0.0588, 0.0588, 0.0588],\n", | ||
" [0.0745, 0.0706, 0.0745, ..., 0.0627, 0.0627, 0.0627],\n", | ||
" [0.0706, 0.0745, 0.0745, ..., 0.0706, 0.0706, 0.0706],\n", | ||
" ...,\n", | ||
" [0.1255, 0.1333, 0.1373, ..., 0.2510, 0.2392, 0.2392],\n", | ||
" [0.1098, 0.1176, 0.1255, ..., 0.2510, 0.2392, 0.2314],\n", | ||
" [0.1020, 0.1059, 0.1137, ..., 0.2431, 0.2353, 0.2275]],\n", | ||
"\n", | ||
" [[0.0941, 0.0902, 0.0902, ..., 0.0157, 0.0196, 0.0196],\n", | ||
" [0.0902, 0.0863, 0.0902, ..., 0.0196, 0.0157, 0.0196],\n", | ||
" [0.0902, 0.0902, 0.0902, ..., 0.0157, 0.0157, 0.0196],\n", | ||
" ...,\n", | ||
" [0.1294, 0.1333, 0.1490, ..., 0.1961, 0.1882, 0.1843],\n", | ||
" [0.1098, 0.1137, 0.1255, ..., 0.1922, 0.1843, 0.1804],\n", | ||
" [0.1059, 0.0980, 0.1059, ..., 0.1882, 0.1804, 0.1765]]])\n", | ||
"Image shape: torch.Size([3, 64, 64])\n", | ||
"Image datatype: torch.float32\n", | ||
"Image label: 0\n", | ||
"Label datatype: <class 'int'>\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"image, label = train_data[0][0], train_data[0][1]\n", | ||
"\n", | ||
"print(f\"Image tensor:\\n{image}\")\n", | ||
"print(f\"Image shape: {image.shape}\")\n", | ||
"print(f\"Image datatype: {image.dtype}\")\n", | ||
"print(f\"Image label: {label}\")\n", | ||
"print(f\"Label datatype: {type(label)}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 28, | ||
"id": "fd927774", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"(<torch.utils.data.dataloader.DataLoader at 0x20a340d39d0>,\n", | ||
" <torch.utils.data.dataloader.DataLoader at 0x20a340d3a90>)" | ||
] | ||
}, | ||
"execution_count": 28, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"train_dataloader = DataLoader(dataset = train_data, batch_size = 1,\n", | ||
" num_workers = 1, shuffle = True)\n", | ||
"\n", | ||
"test_dataloader = DataLoader(dataset = test_data, batch_size = 1, \n", | ||
" num_workers = 1, shuffle = False)\n", | ||
"\n", | ||
"train_dataloader, test_dataloader" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 29, | ||
"id": "b8fcacf6", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"Image shape: torch.Size([1, 3, 64, 64]) -> [batch_size, color_channels, height, width]\n", | ||
"Label shape: torch.Size([1])\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"image, label = next(iter(train_dataloader))\n", | ||
"\n", | ||
"print(f\"Image shape: {image.shape} -> [batch_size, color_channels, height, width]\")\n", | ||
"print(f\"Label shape: {label.shape}\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "65b95b07", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.18" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
File renamed without changes.
Oops, something went wrong.