gptorch 0.3
Change log
0.3.0
Changes breaking backward compatibility:
- GPR, VFE, SVGP: training inputs order is changed from
(y, x)
to(x, y)
on
model__init__()
s. .predict()
functions return the same type as the inputs provided
(numpy.ndarray
->numpy.ndarray
,torch.Tensor
->torch.Tensor
)- Remove
util.as_variable()
- Remove
util.tensor_type()
- Remove
util.KL_Gaussian()
- Remove
util.gammaln()
GPModel
method.loss()
generally replaces.compute_loss()
..compute_loss()
methods in models generally renamed to.log_likelihood()
and signs flipped to reflect the fact that the loss is generally the negative
LL.
Changes not breaking backward compatibility:
- GPR, VFE: Allow specifying training set on
.compute_loss()
withx
,y
kwargs - GPR, VFE: Allow specifying training inputs on
._predict()
withx
kwarg - GPU supported with
.cuda()
- Remove
GPModel.evaluate()
- Don't print inducing inputs on sparse GP initialization
- Suport for priors in
gptorch.model.Model
s
0.3.1
- Fix some places where
.compute_loss()
wasn't replaced, causingGPModel.optimize()
not to work.
0.3.2
- Issue 20 related to installing gptorch on top of pip-installed versions of PyTorch with non-standard device configurations.
- Issue 22 where importing gptorch changes the default
dtype
in PyTorch from single- to double-precision. - Added
gptorch.__version__