Skip to content

Commit

Permalink
update
Browse files Browse the repository at this point in the history
  • Loading branch information
KovalenkoAE committed Aug 14, 2024
1 parent ed0d9b8 commit 3c79e37
Show file tree
Hide file tree
Showing 76 changed files with 10,245 additions and 8,494 deletions.
Empty file removed docs/.nojekyll
Empty file.
Binary file removed docs/_images/HI_deviation.png
Binary file not shown.
24 changes: 24 additions & 0 deletions docs/_modules/ice/anomaly_detection/datasets.html
Original file line number Diff line number Diff line change
Expand Up @@ -414,6 +414,30 @@ <h1>Source code for ice.anomaly_detection.datasets</h1><div class="highlight"><p
<div class="viewcode-block" id="AnomalyDetectionReinartzTEP.set_name_public_link"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.datasets.html#ice.anomaly_detection.datasets.AnomalyDetectionReinartzTEP.set_name_public_link">[docs]</a> <span class="k">def</span> <span class="nf">set_name_public_link</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;reinartz_tep&#39;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">public_link</span> <span class="o">=</span> <span class="s1">&#39;https://disk.yandex.ru/d/NR6rjqCJCvrBZw&#39;</span></div></div>


<div class="viewcode-block" id="AnomalyDetectionRiethTEP"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.datasets.html#ice.anomaly_detection.datasets.AnomalyDetectionRiethTEP">[docs]</a><span class="k">class</span> <span class="nc">AnomalyDetectionRiethTEP</span><span class="p">(</span><span class="n">BaseDataset</span><span class="p">):</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Dataset of Tennessee Eastman Process dataset </span>
<span class="sd"> Rieth, C. A., Amsel, B. D., Tran, R., &amp; Cook, M. B. (2017). </span>
<span class="sd"> Additional Tennessee Eastman Process Simulation Data for </span>
<span class="sd"> Anomaly Detection Evaluation (Version V1) [Computer software]. </span>
<span class="sd"> Harvard Dataverse. </span>
<span class="sd"> https://doi.org/10.7910/DVN/6C3JR1.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">num_chunks</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">force_download</span><span class="o">=</span><span class="kc">False</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">df</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">test_mask</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">public_link</span> <span class="o">=</span> <span class="kc">None</span>
<span class="bp">self</span><span class="o">.</span><span class="n">set_name_public_link</span><span class="p">()</span>
<span class="bp">self</span><span class="o">.</span><span class="n">_load</span><span class="p">(</span><span class="n">num_chunks</span><span class="p">,</span> <span class="n">force_download</span><span class="p">)</span>
<span class="bp">self</span><span class="o">.</span><span class="n">target</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">target</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="mi">1</span>
<span class="bp">self</span><span class="o">.</span><span class="n">train_mask</span><span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">target</span> <span class="o">!=</span> <span class="mi">0</span><span class="p">]</span> <span class="o">=</span> <span class="kc">False</span>

<div class="viewcode-block" id="AnomalyDetectionRiethTEP.set_name_public_link"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.datasets.html#ice.anomaly_detection.datasets.AnomalyDetectionRiethTEP.set_name_public_link">[docs]</a> <span class="k">def</span> <span class="nf">set_name_public_link</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
<span class="bp">self</span><span class="o">.</span><span class="n">name</span> <span class="o">=</span> <span class="s1">&#39;rieth_tep&#39;</span>
<span class="bp">self</span><span class="o">.</span><span class="n">public_link</span> <span class="o">=</span> <span class="s1">&#39;https://disk.yandex.ru/d/l9C0HzQUw2Ying&#39;</span></div></div>
</pre></div>

</article>
Expand Down
45 changes: 41 additions & 4 deletions docs/_modules/ice/anomaly_detection/metrics.html
Original file line number Diff line number Diff line change
Expand Up @@ -366,19 +366,56 @@
<article class="bd-article" role="main">

<h1>Source code for ice.anomaly_detection.metrics</h1><div class="highlight"><pre>
<div class="viewcode-block" id="accuracy"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.metrics.html#ice.anomaly_detection.metrics.accuracy">[docs]</a><span></span><span class="k">def</span> <span class="nf">accuracy</span><span class="p">(</span><span class="n">pred</span><span class="p">:</span> <span class="nb">list</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="nb">list</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span></span><span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
<span class="kn">from</span> <span class="nn">sklearn.metrics</span> <span class="kn">import</span> <span class="n">confusion_matrix</span>


<div class="viewcode-block" id="accuracy"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.metrics.html#ice.anomaly_detection.metrics.accuracy">[docs]</a><span class="k">def</span> <span class="nf">accuracy</span><span class="p">(</span><span class="n">pred</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="nb">float</span><span class="p">:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> Accuracy of the classification is the number of true positives divided by </span>
<span class="sd"> the number of examples.</span>

<span class="sd"> Args:</span>
<span class="sd"> pred (list): predictions.</span>
<span class="sd"> target (list): target values.</span>
<span class="sd"> pred (np.ndarray): predictions.</span>
<span class="sd"> target (np.ndarray): target values.</span>
<span class="sd"> </span>
<span class="sd"> Returns:</span>
<span class="sd"> float: accuracy</span>
<span class="sd"> float: accuracy.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="k">return</span> <span class="nb">sum</span><span class="p">(</span><span class="n">pred</span> <span class="o">==</span> <span class="n">target</span><span class="p">)</span> <span class="o">/</span> <span class="nb">len</span><span class="p">(</span><span class="n">pred</span><span class="p">)</span></div>


<div class="viewcode-block" id="true_positive_rate"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.metrics.html#ice.anomaly_detection.metrics.true_positive_rate">[docs]</a><span class="k">def</span> <span class="nf">true_positive_rate</span><span class="p">(</span><span class="n">pred</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> True Positive Rate is the number of detected faults i divided by the </span>
<span class="sd"> number of faults i.</span>

<span class="sd"> Args:</span>
<span class="sd"> pred (np.ndarray): predictions.</span>
<span class="sd"> target (np.ndarray): target values.</span>
<span class="sd"> </span>
<span class="sd"> Returns:</span>
<span class="sd"> list: list of float values with true positive rate for each fault.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">cm</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">pred</span><span class="p">,</span> <span class="n">labels</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">target</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span><span class="p">))</span>
<span class="n">correct</span> <span class="o">=</span> <span class="n">cm</span><span class="p">[</span><span class="mi">1</span><span class="p">:,</span> <span class="mi">1</span><span class="p">:]</span><span class="o">.</span><span class="n">diagonal</span><span class="p">()</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="n">correct</span> <span class="o">/</span> <span class="n">cm</span><span class="p">[</span><span class="mi">1</span><span class="p">:]</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="mi">1</span><span class="p">))</span></div>


<div class="viewcode-block" id="false_positive_rate"><a class="viewcode-back" href="../../../reference/ice.anomaly_detection.metrics.html#ice.anomaly_detection.metrics.false_positive_rate">[docs]</a><span class="k">def</span> <span class="nf">false_positive_rate</span><span class="p">(</span><span class="n">pred</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">np</span><span class="o">.</span><span class="n">ndarray</span><span class="p">[</span><span class="nb">float</span><span class="p">]:</span>
<span class="w"> </span><span class="sd">&quot;&quot;&quot;</span>
<span class="sd"> False Positive Rate, aka False Alarm Rate is the number of false alarms i </span>
<span class="sd"> divided by the number of normal samples.</span>

<span class="sd"> Args:</span>
<span class="sd"> pred (np.ndarray): predictions.</span>
<span class="sd"> target (np.ndarray): target values.</span>
<span class="sd"> </span>
<span class="sd"> Returns:</span>
<span class="sd"> list: list of float values with true positive rate for each fault.</span>
<span class="sd"> &quot;&quot;&quot;</span>
<span class="n">cm</span> <span class="o">=</span> <span class="n">confusion_matrix</span><span class="p">(</span><span class="n">target</span><span class="p">,</span> <span class="n">pred</span><span class="p">,</span> <span class="n">labels</span><span class="o">=</span><span class="n">np</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">target</span><span class="o">.</span><span class="n">max</span><span class="p">()</span> <span class="o">+</span> <span class="mi">1</span><span class="p">))</span>
<span class="k">return</span> <span class="nb">list</span><span class="p">(</span><span class="n">cm</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">:]</span> <span class="o">/</span> <span class="n">cm</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">sum</span><span class="p">())</span></div>
</pre></div>

</article>
Expand Down
Loading

0 comments on commit 3c79e37

Please sign in to comment.