Skip to content

๐Ÿงฎ๐Ÿค– Simple implementation of symbolic computations written on pure Python

License

Notifications You must be signed in to change notification settings

codemorphist/smbl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

74 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

SMBL

SMBL โ€” is simple package written on Python for symbolic calculations

Features

  • Var() โ€” You can create variables and use it in Expressions
  • Domain() โ€” You can create some rule for variables
  • Expression() โ€” You can create Expression from Constants(int, float, complex) or from variables, using operation to operate by it
  • Operation() โ€” You can create operation to operate by variables
  • Function() โ€” TODO

Navigation:

Imports

Default

Imports what you need to work with SMBL

from smbl import Var    # For create new variables
from smbl.domain import *   # For use default domains

Implement own classes

Imports if you want to expand functionality of some classes or want to create your own based on exist class to use it for your special calculations

from smbl.domain import Domain  # For implement you own domain class
from smbl.operation import Operation    # For implement you own operation
# from smbl.function import Function # For Implement you own Function

Implementations example:

Variable

Usage

This section demonstrates how to create and use variables

>>> Var(some_name, value=some_value, domain=some_domain)
>>> Var.some_name		# you can acces to variable without save it to python variable
    Var(name="some_name", value="some_value", domain=some_domain)
>>> Var.some_name.value = some_new_value

Expression

Usage

This section demonstrates how to create Expressions from variables

NOTE: You can also use other Expressions for variables values

>>> Var("x")
    Var("x", value=None, domain=DefaultDomain)
>>> Var("y")
    Var("y", value=None, domain=DefaultDomain)
>>> e = Var.x + Var.y
>>> e
    Expression(operation="+", operands=[
        Var("x", value=None, domain=DefaultDomain),
        Var("y", value=None, domain=DefaultDomain),
    ])
>>> str(e)
    '(x + y)'

Calculation

This section demonstrates how to calculate expression, with given variables values

NOTE: You can also use other Expressions for variables values

>>> Var("x")
    Var("x", value=None, domain=DefaultDomain)
>>> Var("y")
    Var("y", value=None, domain=DefaultDomain)
>>> e = Var.x + Var.y
>>> e(x=4, y=5)
    9
>>> e2 = e(y=5)
>>> str(e2)
    '(x + 5)'

Domain

This section demonstrates how use domains

NOTE: Domain it is something like rule for you variables, for examples you can create variable the values of which can only be prime numbers

Usage

This section demonstrates how to check value in Domain

some_value in TestDomain()		# return True if some_value in TestDomain else False

Own Domain

If you want to create your own domain you should create a class that inherits from Domain and override the __in_domain__ method:

from smbl.domain import Domain


class OwnDomain(Domain):
    def __in_domain__(self, value: any) -> bool:
        """
        Write code to check value in domain
        """
        pass

Examples

class DefaultDomain(Domain):
    """
    Default domain which alway return True
    """
    def __in_domain__(self, param: any) -> bool:
        return True


class EvenDomain(Domain):
    """
    Domain for even numbers
    """
    def __in_domain__(self, value: int) -> bool:
        return value % 2 == 0


class OddDomain(Domain):
    """
    Domain for odd numbers
    """
    def __in_domain__(self, value: int) -> bool:
        return not value in EvenDomain()


class IntegerDomain(Domain):
    """
    Domain for integer numbers

    ..., -3, -2, -1, 0, 1, 2, 3, ...
    """
    def __in_domain__(self, value: int) -> bool:
        return isinstance(value, int)


class NaturalDomain(Domain):
    """
    Domain for natural numbers

    0, 1, 2, 3, 4, 5, 6, 7, 8, ...
    """
    def __in_domain__(self, value: int) -> bool:
        return value in IntegerDomain() and value >= 0


class PrimeDomain(Domain):
    """
    Domain for only positive prime numbers

    2, 3, 5, 7, 11, 13, 17, ...
    """
    def __is_prime__(self, value: int) -> bool:
        """
        Check natural number is prime
        """
        if value < 2:
            return False
        if value == 2: 
            return True

        if value in EvenDomain():
            return False
        
        i = 3 
        while i*i <= value:
            if value % i:
                return False
            i += 2
        return True

    def __in_domain__(self, value: int) -> bool:
        return value in NaturalDomain() and self.__is_prime__(value)


class IntegerPrimeDomain(Domain):
    """
    Domain for positive and negative prime numbers

    ..., -17, -13, ..., -2, 2, 3, 5, 7, 11, 13, 17, ...
    """
    def __in_domain__(self, value: int) -> bool:
        return value in IntegerDomain() and abs(value) in PrimeDomain()


class RealDomain(Domain):
    """
    Domain for real numbers

    0.(3), sqrt(2)/2, 0, 1, -pi, e, ...
    """
    def __in_domain__(self, value: float | int) -> bool:
        return isinstance(value, float) or value in IntegerDomain()


class ComplexDomain(Domain):
    """
    Domain for complex numbers

    1+i, i, 0, 1, 14+8i, ...
    """
    def __in_domain__(self, value: float | int | complex):
        return value in RealDomain() or isinstance(value, complex)

Operation

This section demonstrates how to use operation

NOTE: Operators is essense what take some arguments and calculate some result

Usage

This section demonstrates how to calculate value using operation

res = TestOperator(val1, val2,..., valn)

Own Operation

You can create UnaryOperation and BinaryOperation:

from smbl.operation import BinaryOperation, NewUnaryOperation


NewBinaryOperation = BinaryOperation("symbol", callback)
NewUnaryOperation = UnaryOperation("symbol", callback)

Also, you can implement operation with custom variables count:

from smbl.operation import Operation


# One 
ThreeValueOperation = Operation("symbol", callback, operand_count=3)

# Two
class ThreeValueOperation(Operation):
    def __init__(self,
                 symbol: str,
                 operation: callable):
        super().__init__(symbol, operation, operand_count=3)

Examples

Add = BinaryOperation("+", lambda a, b: a + b)
Sub = BinaryOperation("-", lambda a, b: a - b)
Mul = BinaryOperation("*", lambda a, b: a * b)
Div = BinaryOperation("/", lambda a, b: a / b)
TrueDiv = BinaryOperation("//", lambda a, b: a // b)
Mod = BinaryOperation("%", lambda a, b: a % b)
Pow = BinaryOperation("^", lambda a, b: a**b)

About

๐Ÿงฎ๐Ÿค– Simple implementation of symbolic computations written on pure Python

Topics

Resources

License

Stars

Watchers

Forks

Languages