Skip to content

Commit

Permalink
Add generic benchmark runner (#65)
Browse files Browse the repository at this point in the history
* Add generic example runner

* Init d and ref_d with different values

* Move runner to benchmark folder
  • Loading branch information
aacostadiaz authored May 29, 2024
1 parent 8e8fb15 commit 4b09a7a
Show file tree
Hide file tree
Showing 2 changed files with 389 additions and 1 deletion.
388 changes: 388 additions & 0 deletions benchmarks/common/benchmark_runner.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,388 @@
/***************************************************************************************************
* Copyright (c) 2024 - 2024 Codeplay Software Ltd. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

#include "cutlass/gemm/device/gemm.h"
#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/collective/collective_mma.hpp"
#include "cutlass/util/GPU_Clock.hpp"

#include "cutlass/util/host_tensor.h"
#include "cutlass/util/reference/host/tensor_compare.h"
#include "cutlass/util/reference/host/tensor_copy.h"
#include "cutlass/util/reference/host/tensor_fill.h"
#include "cute/tensor.hpp"

#include "cutlass/util/command_line.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/gemm_complex.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/print_error.hpp"

template <typename T>
static void fill_matrix(std::vector<T> &M)
{
std::generate(std::begin(M), std::end(M), [&]
{ return static_cast<T>( (rand() / double(RAND_MAX)) ); });
}

using namespace cute;

///////////////////////////////////////////////////////////////////////////////////////////////////

// Command line options parsing
struct Options {

bool help;
bool error;

int m, n, k, l, iterations;
float alpha, beta;

Options():
help(false),
error(false),
m(4096), n(4096), k(4096), l(1), iterations(100),
alpha(1.f), beta(0.f)
{ }

// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);

if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}

cmd.get_cmd_line_argument("m", m, 4096);
cmd.get_cmd_line_argument("n", n, 4096);
cmd.get_cmd_line_argument("k", k, 4096);
cmd.get_cmd_line_argument("l", l, 1);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
cmd.get_cmd_line_argument("iterations", iterations, 100);
}

/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {

out << "PVC GEMM Example\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M extent of the GEMM\n"
<< " --n=<int> Sets the N extent of the GEMM\n"
<< " --k=<int> Sets the K extent of the GEMM\n"
<< " --l=<int> Sets the L extent (batch count) of the GEMM\n"
<< " --alpha=<s32> Epilogue scalar alpha\n"
<< " --beta=<s32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Iterations\n\n";

return out;
}
};

///////////////////////////////////////////////////////////////////////////////////////////////////

template <class Gemm>
struct BenchmarkRunner {

using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;

using LayoutA = typename Gemm::LayoutA;
using LayoutB = typename Gemm::LayoutB;
using LayoutC = typename Gemm::LayoutC;
using LayoutD = typename Gemm::LayoutD;

using ElementA = typename Gemm::ElementA;
using ElementB = typename Gemm::ElementB;
using ElementAcc = typename Gemm::ElementAccumulator;

using CollectiveEpilogue = typename Gemm::CollectiveEpilogue;
using ElementC = typename Gemm::ElementC;
using ElementOutput = typename CollectiveEpilogue::ElementOutput;
using ElementCompute = typename CollectiveEpilogue::ElementCompute;
using ElementAccumulator = typename CollectiveEpilogue::ElementAccumulator;

using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;

//
// Data members
//

/// Initialization
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;

cutlass::DeviceAllocation<ElementA> block_A;
cutlass::DeviceAllocation<ElementB> block_B;
cutlass::DeviceAllocation<ElementC> block_C;
cutlass::DeviceAllocation<ElementOutput> block_D;
cutlass::DeviceAllocation<ElementOutput> block_ref_D;

//
// Methods
//

bool verify(const ProblemShapeType& problem_size, ElementCompute alpha, ElementCompute beta) {
auto [M, N, K, L] = problem_size;

cutlass::TensorRef ref_A(block_A.get(), LayoutA::packed({M, K}));
cutlass::TensorRef ref_B(block_B.get(), LayoutB::packed({K, N}));
cutlass::TensorRef ref_C(block_C.get(), LayoutC::packed({M, N}));
cutlass::TensorRef ref_D(block_ref_D.get(), LayoutD::packed({M, N}));

cutlass::reference::device::GemmComplex(
{M, N, K},
alpha,
ref_A,
cutlass::ComplexTransform::kNone,
ref_B,
cutlass::ComplexTransform::kNone,
beta,
ref_C,
ref_D,
ElementAccumulator(0),
L, // batch_count
M * K, // batch_stride_A
K * N, // batch_stride_B
M * N, // batch_stride_C
M * N // batch_stride_D
);

#if defined(CUTLASS_ENABLE_SYCL)
syclcompat::wait();
#else
cudaDeviceSynchronize();
#endif

// Check if output from CUTLASS kernel and reference kernel are relatively equal or not
// need to set a larger error margin for comparison to succeed
auto epsilon = static_cast<ElementOutput>(0.1f);
auto nonzero_floor = static_cast<ElementOutput>(0.1f);

bool passed = cutlass::reference::device::BlockCompareRelativelyEqual(
block_ref_D.get(), block_D.get(), block_D.size(),
epsilon, nonzero_floor);

return passed;
}

/// Initialize operands to be used in the GEMM and reference GEMM
virtual void initialize(const ProblemShapeType& problem_size) {
auto problem_shape_MNKL = cute::append<4>(problem_size, 1);
auto [M, N, K, L] = problem_shape_MNKL;

stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L));

block_A.reset(M * K * L);
block_B.reset(K * N * L);
block_C.reset(M * N * L);
block_D.reset(M * N * L);
block_ref_D.reset(M * N * L);

// TODO: Enable initialization on device directly once RNG is
// available through SYCL.
std::vector<ElementA> a(K * M * L);
std::vector<ElementB> b(K * N * L);
std::vector<ElementC> c(M * N * L);
std::vector<ElementC> d(M * N * L, ElementC{-1});
std::vector<ElementC> ref_d(M * N * L, ElementC{-2});

fill_matrix(a);
fill_matrix(b);
fill_matrix(c);

block_A.copy_from_host(a.data(), a.size());
block_B.copy_from_host(b.data(), b.size());
block_C.copy_from_host(c.data(), c.size());
block_D.copy_from_host(d.data(), d.size());
block_ref_D.copy_from_host(ref_d.data(), d.size());
}

virtual void run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) {
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l};

initialize(problem_size);

typename Gemm::GemmKernel::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_size,
{block_A.get(), stride_A, block_B.get(), stride_B},
{{options.alpha, options.beta}, block_C.get(), stride_C, block_D.get(), stride_D},
hw_info
};

Gemm gemm_op;

size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

gemm_op.can_implement(arguments);

gemm_op.initialize(arguments, workspace.get());

// Run the GEMM
gemm_op.run();

#if defined(CUTLASS_ENABLE_SYCL)
syclcompat::wait();
#else
cudaDeviceSynchronize();
#endif

// Verify that the result is correct
bool passed = verify(problem_size, options.alpha, options.beta);
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl;

if (passed && options.iterations > 0) {
GPU_Clock timer;
timer.start();
for (int i = 0; i < options.iterations; ++i) {
gemm_op.run();
}

float cute_time = timer.seconds() / options.iterations;
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12;
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l
<< std::endl;
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time * 1000);
}
}
};

template <class Gemm>
struct PvcBenchmarkRunner : BenchmarkRunner<Gemm> {
using Base = BenchmarkRunner<Gemm>;

using ElementB = typename Base::ElementB;

using ProblemShapeType = typename Base::ProblemShapeType;

cutlass::DeviceAllocation<ElementB> block_B_vnni;

template <typename T>
void vnni_matrix(
T* dst, const T* src,
int batch, int numRows, int numCols, int factor)
{
for (int b = 0; b < batch; b++) {
for (int r = 0; r < numRows / factor; r++) {
for (int c = 0; c < numCols; c++) {
for (int k = 0; k < factor; k++) {
dst[((b * (numRows / factor) + r) * numCols + c) * factor + k] =
src[((b * (numRows / factor) + r) * factor + k) * numCols + c];
}
}
}
}
}

void initialize(const ProblemShapeType& problem_size) override {
Base::initialize(problem_size);

auto problem_shape_MNKL = cute::append<4>(problem_size, 1);
auto [M, N, K, L] = problem_shape_MNKL;

block_B_vnni.reset(Base::block_B.size());

std::vector<ElementB> b(K * N * L);
std::vector<ElementB> b_vnni(b.size());

Base::block_B.copy_to_host(b.data());
vnni_matrix(b_vnni.data(), b.data(), L, K, N, 2);

block_B_vnni.copy_from_host(b_vnni.data());
}

void run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) override {
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l};

initialize(problem_size);

typename Gemm::GemmKernel::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_size,
{Base::block_A.get(), Base::stride_A, block_B_vnni.get(), Base::stride_B},
{
{options.alpha, options.beta},
Base::block_C.get(), Base::stride_C, Base::block_D.get(), Base::stride_D
},
hw_info
};

Gemm gemm_op;

size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

gemm_op.can_implement(arguments);

gemm_op.initialize(arguments, workspace.get());

// Run the GEMM
gemm_op.run();

#if defined(CUTLASS_ENABLE_SYCL)
syclcompat::wait();
#else
cudaDeviceSynchronize();
#endif

// Verify that the result is correct
bool passed = Base::verify(problem_size, options.alpha, options.beta);
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl;

if (passed && options.iterations > 0) {
GPU_Clock timer;
timer.start();
for (int i = 0; i < options.iterations; ++i) {
gemm_op.run();
}

float cute_time = timer.seconds() / options.iterations;
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12;
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l << std::endl;
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time*1000);
}
}
};

2 changes: 1 addition & 1 deletion examples/sycl/pvc/pvc_bfloat_dpas_gemm_cute.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -233,7 +233,7 @@ struct ExampleRunner {
block_D.reset(M * N * L);
block_ref_D.reset(M * N * L);

// TODO: Enable initialization on device directly once RNG is
// TODO: Enable initialization on device directly once RNG is
// available through SYCL.
std::vector<ElementA> a(K * M * L);
std::vector<ElementB> b(K * N * L);
Expand Down

0 comments on commit 4b09a7a

Please sign in to comment.