Skip to content

Commit

Permalink
gelu example && TensorRefGeLu
Browse files Browse the repository at this point in the history
  • Loading branch information
jiyang1011 committed Dec 9, 2024
1 parent d49319f commit 8d064c8
Show file tree
Hide file tree
Showing 4 changed files with 531 additions and 1 deletion.
5 changes: 5 additions & 0 deletions examples/sycl/pvc/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,11 @@ cutlass_example_add_executable(
pvc_gemm_with_epilogue_relu.cpp
)

cutlass_example_add_executable(
pvc_gemm_with_epilogue_gelu
pvc_gemm_with_epilogue_gelu.cpp
)

cutlass_example_add_executable(
pvc_collective_builder
pvc_collective_builder.cpp
Expand Down
377 changes: 377 additions & 0 deletions examples/sycl/pvc/pvc_gemm_with_epilogue_gelu.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,377 @@
/***************************************************************************************************
* Copyright (c) 2024 - 2024 Codeplay Software Ltd. All rights reserved.
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
**************************************************************************************************/

#include "cutlass/epilogue/collective/default_epilogue.hpp"
#include "cutlass/epilogue/collective/xe_epilogue.hpp"
#include "cutlass/epilogue/fusion/xe_callbacks.hpp"
#include "cutlass/gemm/device/gemm_universal.h"
#include "cutlass/gemm/device/gemm_universal_adapter.h"
#include "cutlass/gemm/collective/collective_mma.hpp"
#include "cutlass/util/GPU_Clock.hpp"

#include <cute/tensor.hpp>
#include <random>

#include "cutlass/util/command_line.h"
#include "cutlass/util/device_memory.h"
#include "cutlass/util/packed_stride.hpp"
#include "cutlass/util/reference/device/gemm_complex.h"
#include "cutlass/util/reference/device/tensor_compare.h"
#include "cutlass/util/reference/device/tensor_gelu.h"
#include "cutlass/tensor_view.h"
#include "cutlass/coord.h"

#include "common.h"

using namespace cute;

///////////////////////////////////////////////////////////////////////////////////////////////////

// Command line options parsing
struct Options {

bool help;
bool error;

int m, n, k, l, iterations;
float alpha, beta;

Options():
help(false),
error(false),
m(5120), n(4096), k(4096), l(1), iterations(100),
alpha(1.f), beta(0.f)
{ }

// Parses the command line
void parse(int argc, char const **args) {
cutlass::CommandLine cmd(argc, args);

if (cmd.check_cmd_line_flag("help")) {
help = true;
return;
}

cmd.get_cmd_line_argument("m", m, 5120);
cmd.get_cmd_line_argument("n", n, 4096);
cmd.get_cmd_line_argument("k", k, 4096);
cmd.get_cmd_line_argument("l", l, 1);
cmd.get_cmd_line_argument("alpha", alpha, 1.f);
cmd.get_cmd_line_argument("beta", beta, 0.f);
cmd.get_cmd_line_argument("iterations", iterations, 100);
}

/// Prints the usage statement.
std::ostream & print_usage(std::ostream &out) const {

out << "PVC GEMM Example\n\n"
<< "Options:\n\n"
<< " --help If specified, displays this usage statement\n\n"
<< " --m=<int> Sets the M extent of the GEMM\n"
<< " --n=<int> Sets the N extent of the GEMM\n"
<< " --k=<int> Sets the K extent of the GEMM\n"
<< " --l=<int> Sets the L extent (batch count) of the GEMM\n"
<< " --alpha=<s32> Epilogue scalar alpha\n"
<< " --beta=<s32> Epilogue scalar beta\n\n"
<< " --iterations=<int> Iterations\n\n";

return out;
}
};

///////////////////////////////////////////////////////////////////////////////////////////////////

template <
class Gemm
>
struct ExampleRunner {

using StrideA = typename Gemm::GemmKernel::StrideA;
using StrideB = typename Gemm::GemmKernel::StrideB;
using StrideC = typename Gemm::GemmKernel::StrideC;
using StrideD = typename Gemm::GemmKernel::StrideD;

using LayoutA = typename Gemm::LayoutA;
using LayoutB = typename Gemm::LayoutB;
using LayoutC = typename Gemm::LayoutC;
using LayoutD = typename Gemm::LayoutD;

using ElementA = typename Gemm::ElementA;
using ElementB = typename Gemm::ElementB;
using ElementAcc = typename Gemm::ElementAccumulator;

using CollectiveEpilogue = typename Gemm::CollectiveEpilogue;
using ElementC = typename Gemm::ElementC;
using ElementOutput = typename CollectiveEpilogue::ElementOutput;
using ElementCompute = typename CollectiveEpilogue::ElementCompute;
using ElementAccumulator = typename CollectiveEpilogue::ElementAccumulator;

using ProblemShapeType = typename Gemm::GemmKernel::ProblemShape;

//
// Data members
//

/// Initialization
StrideA stride_A;
StrideB stride_B;
StrideC stride_C;
StrideD stride_D;
uint64_t seed = 0;

cutlass::DeviceAllocation<ElementA> block_A;
cutlass::DeviceAllocation<ElementB> block_B;
cutlass::DeviceAllocation<ElementC> block_C;
cutlass::DeviceAllocation<ElementOutput> block_D;
cutlass::DeviceAllocation<ElementOutput> block_ref_D;

//
// Methods
//

bool verify(const ProblemShapeType& problem_size, ElementCompute alpha, ElementCompute beta) {
auto [M, N, K, L] = problem_size;

cutlass::TensorRef ref_A(block_A.get(), LayoutA::packed({M, K}));
cutlass::TensorRef ref_B(block_B.get(), LayoutB::packed({K, N}));
cutlass::TensorRef ref_C(block_C.get(), LayoutC::packed({M, N}));
cutlass::TensorRef ref_D(block_ref_D.get(), LayoutD::packed({M, N}));

cutlass::reference::device::GemmComplex(
{M, N, K},
alpha,
ref_A,
cutlass::ComplexTransform::kNone,
ref_B,
cutlass::ComplexTransform::kNone,
beta,
ref_C,
ref_D,
ElementAccumulator(0),
L, // batch_count
M * K, // batch_stride_A
K * N, // batch_stride_B
M * N, // batch_stride_C
M * N // batch_stride_D
);

syclcompat::wait();

using TensorView = cutlass::TensorView<ElementOutput, LayoutD>;
cutlass::reference::device::TensorGeLu(TensorView(block_ref_D.get(), LayoutD::packed({M, N}),
cutlass::make_Coord(M, N)));

syclcompat::wait();

// Check if output from CUTLASS kernel and reference kernel are equal or not
bool passed = cutlass::reference::device::BlockCompareEqual(
block_ref_D.get(), block_D.get(), block_D.size());

return passed;
}

/// Initialize operands to be used in the GEMM and reference GEMM
void initialize(const ProblemShapeType& problem_size) {
auto problem_shape_MNKL = cute::append<4>(problem_size, 1);
auto [M, N, K, L] = problem_shape_MNKL;

stride_A = cutlass::make_cute_packed_stride(StrideA{}, cute::make_shape(M, K, L));
stride_B = cutlass::make_cute_packed_stride(StrideB{}, cute::make_shape(N, K, L));
stride_C = cutlass::make_cute_packed_stride(StrideC{}, cute::make_shape(M, N, L));
stride_D = cutlass::make_cute_packed_stride(StrideD{}, cute::make_shape(M, N, L));

block_A.reset(M * K * L);
block_B.reset(K * N * L);
block_C.reset(M * N * L);
block_D.reset(M * N * L);
block_ref_D.reset(M * N * L);

initialize_block(block_A, seed + 2023);
initialize_block(block_B, seed + 2022);
initialize_block(block_C, seed + 2021);
}

void run(const Options& options, const cutlass::KernelHardwareInfo& hw_info) {
ProblemShapeType problem_size = ProblemShapeType{options.m, options.n, options.k, options.l};

initialize(problem_size);

typename Gemm::GemmKernel::Arguments arguments{
cutlass::gemm::GemmUniversalMode::kGemm,
problem_size,
{block_A.get(), stride_A, block_B.get(), stride_B},
{{options.alpha, options.beta}, block_C.get(), stride_C, block_D.get(), stride_D},
hw_info
};

Gemm gemm_op;

size_t workspace_size = Gemm::get_workspace_size(arguments);
cutlass::device_memory::allocation<uint8_t> workspace(workspace_size);

gemm_op.can_implement(arguments);

gemm_op.initialize(arguments, workspace.get());

// Run the GEMM
gemm_op.run();

syclcompat::wait();

// Verify that the result is correct
bool passed = verify(problem_size, options.alpha, options.beta);
std::cout << "Disposition: " << (passed ? "Passed" : "Failed") << std::endl;

if (passed && options.iterations > 0) {
GPU_Clock timer;
timer.start();
for (int i = 0; i < options.iterations; ++i) {
gemm_op.run();
}
syclcompat::wait();

float cute_time = timer.seconds() / options.iterations;
double tflops = (2.0 * options.m * options.n * options.k * options.l) * 1e-12;
std::cout << "Problem Size: " << options.m << 'x' << options.n << 'x' << options.k << 'x' << options.l << std::endl;
printf("Cutlass GEMM Performance: [%4.3f]TFlop/s (%6.4f)ms\n", tflops / cute_time, cute_time*1000);
}

return;
}

};

int main(int argc, const char** argv)
{
//
// Parse options
//

Options options;

options.parse(argc, argv);

if (options.help) {
options.print_usage(std::cout) << std::endl;
return 0;
}

if (options.error) {
std::cerr << "Aborting execution." << std::endl;
return -1;
}

//
// Run examples
//

// The KernelHardwareInfo struct holds the number of EUs on the GPU with a given device ID. This
// information is used by the underlying kernel.
cutlass::KernelHardwareInfo hw_info;

// Change device_id to another value if you are running on a machine with multiple GPUs and wish
// to use a GPU other than that with device ID 0.
hw_info.sm_count = cutlass::KernelHardwareInfo::query_device_multiprocessor_count(hw_info.device_id);

bool passed;

// The code section below describes datatype for input, output matrices and computation between
// elements in input matrices.
using ElementAccumulator = float; // <- data type of accumulator
using ElementComputeEpilogue = float; // <- data type of epilogue operations
using ElementInputA = bfloat16_t; // <- data type of elements in input matrix A
using ElementInputB = bfloat16_t; // <- data type of elements in input matrix B
using ElementOutput = float; // <- data type of elements in output matrix D

using LayoutA = cutlass::layout::RowMajor;
using LayoutB = cutlass::layout::RowMajor;
using LayoutC = cutlass::layout::RowMajor;
using LayoutD = cutlass::layout::RowMajor;

using GmemTiledCopyA = XE_2D_U16x8x16_LD_N;
using GmemTiledCopyB = XE_2D_U16x16x16_LD_V;

// Workgroup-level tile
using TileShape = Shape<_256, _128, _16>;

using TiledMma = TiledMMA<MMA_Atom<XE_8x16x16_F32BF16BF16F32_TT>,
Layout<Shape<_8,_2,_1>>,
Tile<_64,_32,_16>>; // Subgroup level-tile

constexpr int PipelineStages = 3;
using GEMMDispatchPolicy = cutlass::gemm::MainloopIntelPVC<PipelineStages>;
using EpilogueDispatchPolicy = cutlass::epilogue::IntelPVCEpilogue;

using EpilogueOp = cutlass::epilogue::fusion::LinCombEltAct<cutlass::epilogue::thread::GELU, ElementOutput,
ElementComputeEpilogue, ElementAccumulator, ElementAccumulator, cutlass::FloatRoundStyle::round_to_nearest>;

using FusionCallBacks = cutlass::epilogue::fusion::FusionCallbacks<EpilogueDispatchPolicy, EpilogueOp, TileShape,
decltype(tile_shape(TiledMma()))>;
using CollectiveEpilogue = cutlass::epilogue::collective::CollectiveEpilogue<
EpilogueDispatchPolicy,
TileShape,
ElementAccumulator,
cutlass::gemm::TagToStrideC_t<LayoutC>,
ElementOutput,
cutlass::gemm::TagToStrideC_t<LayoutD>,
FusionCallBacks,
XE_2D_U32x8x16_LD_N,
void, void,
XE_2D_U32x8x16_ST_N,
void, void>;

// Mainloop
using CollectiveMainloop = cutlass::gemm::collective::CollectiveMma<
GEMMDispatchPolicy,
TileShape,
ElementInputA,
cutlass::gemm::TagToStrideA_t<LayoutA>,
ElementInputB,
cutlass::gemm::TagToStrideB_t<LayoutB>,
TiledMma,
GmemTiledCopyA, void, void, cute::identity, // A
GmemTiledCopyB, void, void, cute::identity // B
>;

using GemmKernel = cutlass::gemm::kernel::GemmUniversal<
Shape<int, int, int, int>,
CollectiveMainloop,
CollectiveEpilogue
>;

using Gemm = cutlass::gemm::device::GemmUniversalAdapter<GemmKernel>;

ExampleRunner<Gemm> runner;

runner.run(options, hw_info);

return 0;
}
Loading

0 comments on commit 8d064c8

Please sign in to comment.