Skip to content

Commit

Permalink
Merge branch 'sycl-develop' into online_softmax
Browse files Browse the repository at this point in the history
  • Loading branch information
t4c1 authored Dec 6, 2024
2 parents 51cb0b5 + d49319f commit d14823d
Show file tree
Hide file tree
Showing 425 changed files with 236,719 additions and 56,080 deletions.
27 changes: 26 additions & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,16 +1,41 @@
# NVIDIA CUTLASS Changelog

## [3.6.0](https://github.com/NVIDIA/cutlass/releases/tag/v3.6.0) (2024-10-03)

- [Hopper structured sparse GEMM](./examples/62_hopper_sparse_gemm/62_hopper_sparse_gemm.cu).
+ [FP16](./test/unit/gemm/device/sm90_sparse_gemm_f16_f16_f32_tensor_op_f32.cu)
+ [FP8](./test/unit/gemm/device/sm90_sparse_gemm_f8_f8_f32_tensor_op_f32.cu)
+ [INT8](./test/unit/gemm/device/sm90_sparse_gemm_s8_s8_s32_tensor_op_s32.cu)
+ [TF32](./test/unit/gemm/device/sm90_sparse_gemm_tf32_tf32_f32_tensor_op_f32.cu)
- A refactor to the CUTLASS 3.x convolution `kernel::ConvUniversal` [API](./include/cutlass/conv/kernel/sm90_implicit_gemm_tma_warpspecialized.hpp) to bring it in line with `gemm::GemmUniversal`. Now the 3.x convolution API is no longer considered as a beta API.
- [An improved mixed input GEMM](./examples/55_hopper_mixed_dtype_gemm/README.md) and a [lookup table implementation](./examples/55_hopper_mixed_dtype_gemm/55_hopper_int4_fp8_gemm.cu) for `INT4`x`FP8` scale-only mode.
- [EVT nodes for Top-K selection and softmax](./include/cutlass/epilogue/fusion/sm90_visitor_topk_softmax.hpp) and [GEMM example using those](./examples/61_hopper_gemm_with_topk_and_softmax/61_hopper_gemm_with_topk_and_softmax.cu).
- [Programmatic Dependent Launch](./include/cutlass/arch/grid_dependency_control.h) (PDL) that leverages a new Hopper feature to speedup two back-to-back kernels, and its corresponding [documentations](./media/docs/dependent_kernel_launch.md).
- [A new debugging tool, synclog](./include/cutlass/arch/synclog.hpp), for dumping out all synchronization events from within a kernel to a file. Please see [synclog documentation](./media/docs/utilities.md#debugging-asynchronous-kernels-with-cutlasss-built-in-synclog-tool) for details.
- A new TMA-enabled [epilogue](./include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for grouped GEMM that brings significant performance improvement, as well as its EVT support.
- A SIMT-enabled pointer-array [epilogue](./include/cutlass/epilogue/collective/sm70_epilogue_vectorized_array.hpp).
- A new [Ping-Pong kernel schedule for Grouped GEMM](./include/cutlass/gemm/kernel/sm90_gemm_array_tma_warpspecialized_pingpong.hpp) and some other optimizations.
- [A new instantiation strategy for CUTLASS profiler kernels](./python/cutlass_library/sm90_shapes.py) along with [improved documentation for instantiation level in CUTLASS profiler](./media/docs/profiler.md#instantiating-more-kernels-with-hopper).
- A new hardware support for comparisons and computations of [`cutlass::bfloat16_t`](./include/cutlass/bfloat16.h)
- Fixed use of isnan on Windows for [`half_t`](./test/unit/core/functional.cu).
Various improvements and fixed from the community and CUTLASS team. Thanks to everyone who submitted PRs!

## [3.5.1](https://github.com/NVIDIA/cutlass/releases/tag/v3.5.1) (2024-07-25)

- [Minimal SM90 WGMMA + TMA GEMM example in 100 lines of code](./examples/cute/tutorial/wgmma_sm90.cu)
- [Exposure of L2 `cache_hint`s in TMA copy atoms](./include/cute/arch/copy_sm90_tma.hpp#L48)
- Exposure of raster order and tile swizzle extent in [CUTLASS library profiler](./media/docs/profiler.md#GEMM), and
[example 48](./examples/48_hopper_warp_specialized_gemm/48_hopper_warp_specialized_gemm.cu).
- [TMA store based and EVT supported epilogues](./include/cutlass/epilogue/collective/sm90_epilogue_array_tma_warpspecialized.hpp) for [Hopper pointer array batched kernels](./test/unit/gemm/device/sm90_gemm_f16_f16_f16_tensor_op_f32_ptr_array.cu).
- A new [`GemmSparseUniversal` API for CUTLASS 2.x Ampere kernels](./include/cutlass/gemm/device/gemm_sparse_universal.h) leveraging 2:4 structured sparsity and [support for LLM friendly tile sizes](./test/unit/gemm/device/gemm_f16n_f16t_f32t_tensor_op_f32_sparse_sm80.cu).
- A new [`GemmSparseUniversal` API for CUTLASS 2.x Ampere kernels](./include/cutlass/gemm/device/gemm_sparse_universal.h) to enable serial and parallel split-k for sparse tensor cores and new tiny tile sizes to better support LLM inferrence:
+ [FP16 TN](./test/unit/gemm/device/gemm_f16t_f16n_f32t_tensor_op_f32_sparse_sm80.cu#L269-L393) and [NT](./test/unit/gemm/device/gemm_f16n_f16t_f32t_tensor_op_f32_sparse_sm80.cu#L269-L411).
+ [int8 TN](./test/unit/gemm/device/gemm_s8t_s8n_s32t_tensor_op_s32_sparse_sm80.cu#L264-L452).
+ [int4 TN](./test/unit/gemm/device/gemm_s4t_s4n_s32t_tensor_op_s32_sparse_sm80.cu#L264-L452).
+ [FP32 TN](./test/unit/gemm/device/gemm_f32t_f32n_f32t_tensor_op_f32_sparse_sm80.cu#L427-L642) and [NT](./test/unit/gemm/device/gemm_f32n_f32t_f32t_tensor_op_f32_sparse_sm80.cu#L427-L456).
- [CUDA host adapter](./include/cutlass/cuda_host_adapter.hpp) extensions to support TMA descriptor construction driver APIs.
- Inclusion of more [Hopper fprop, dgrad, and wgrad convolution kernels in CUTLASS library and profiler](./python/cutlass_library/generator.py).
- Support for residual add (beta != 0) in convolution kernels.
- A new convolution [epilogue](./examples/16_ampere_tensorop_conv2dfprop/ampere_tensorop_conv2dfprop.cu#L269) for CUTLASS 2.x to support non-packed NHWC output.
- A refactor of [include files throughout CUTLASS core directories](./include/cutlass/gemm/collective/collective_mma_decl.hpp) to reduce circular dependencies and [tests to guard against them](./test/self_contained_includes/CMakeLists.txt).
- [A guide for setting up VSCode to work well with CUTLASS](./media/docs/ide_setup.md) and [expanded code style guide](./media/docs/programming_guidelines.md).
- Better support for MSVC as a host compiler.
Expand Down
65 changes: 42 additions & 23 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -177,7 +177,6 @@ set(CUTLASS_ENABLE_BENCHMARKS ON CACHE BOOL "Enable CUTLASS Benchmarks")
set(CUTLASS_ENABLE_TESTS ${CUTLASS_ENABLE_TESTS_INIT} CACHE BOOL "Enable CUTLASS Tests")
set(CUTLASS_ENABLE_GTEST_UNIT_TESTS ${CUTLASS_ENABLE_TESTS} CACHE BOOL "Enable CUTLASS GTest-based Unit Tests")
set(CUTLASS_USE_SYSTEM_GOOGLETEST OFF CACHE BOOL "Use system/external installation of GTest")

set(CUTLASS_USE_PACKED_TUPLE ON CACHE BOOL "If ON, make cute::tuple be new standard-layout tuple type; if OFF, use the original cute::tuple implementation that is _not_ standard-layout.")
if (CUTLASS_USE_PACKED_TUPLE)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTE_USE_PACKED_TUPLE=1)
Expand Down Expand Up @@ -315,6 +314,7 @@ set(CUTLASS_LIBRARY_OPERATIONS "all" CACHE STRING "Comma-delimited list of opera
set(CUTLASS_LIBRARY_KERNELS ${CUTLASS_LIBRARY_KERNELS_INIT} CACHE STRING "Comma-delimited list of kernel name filters. If unspecified, only the largest tile size is enabled. If the string 'all' is specified, all kernels are enabled.")
set(CUTLASS_LIBRARY_IGNORE_KERNELS "" CACHE STRING "Comma-delimited list of kernels to exclude from build. This option ONLY takes effect if CUTLASS_LIBRARY_KERNELS is set.")
set(CUTLASS_LIBRARY_EXCLUDE_KERNELS "" CACHE STRING "Comma-delimited list of kernels to exclude from build. This option always takes effect, whether or not CUTLASS_LIBRARY_KERNELS is set. It also can exclude kernels from the filter file (see KERNEL_FILTER_FILE).")
set(CUTLASS_LIBRARY_INSTANTIATION_LEVEL "" CACHE STRING "Instantiation level for SM90 kernels. Set to `max` and make sure CUTLASS_LIBRARY_KERNELS is non-empty to stamp all possible kernel configurations.")

################################################################################

Expand Down Expand Up @@ -362,6 +362,8 @@ if(CUTLASS_ENABLE_SM90_EXTENDED_MMA_SHAPES)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTE_SM90_EXTENDED_MMA_SHAPES_ENABLED)
endif()

set(CUTLASS_SKIP_REDUCTION_INIT OFF CACHE BOOL "Disable init reduction workspace")

#
# NOTE: running with asan and CUDA requires the following environment variable:
#
Expand Down Expand Up @@ -389,6 +391,10 @@ if(CUTLASS_NVCC_EMBED_PTX)
list(APPEND CUTLASS_CUDA_CLANG_FLAGS --cuda-include-ptx=all)
endif()

if (CUTLASS_SKIP_REDUCTION_INIT)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_SKIP_REDUCTION_INIT=1)
endif()

if (CUTLASS_ENABLE_TENSOR_CORE_MMA)
list(APPEND CUTLASS_CUDA_FLAGS -DCUTLASS_ENABLE_TENSOR_CORE_MMA=1)
endif()
Expand All @@ -398,6 +404,18 @@ if (CUTLASS_PROFILER_DISABLE_REFERENCE)
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_PROFILER_DISABLE_REFERENCE=1)
endif()

if (CUTLASS_ENABLE_GDC_FOR_SM90)
message(STATUS "Grid Dependency Control (GDC) is enabled for SM90 kernels (required for programmatic dependent launches).")
list(APPEND CUTLASS_CUDA_NVCC_FLAGS -DCUTLASS_ENABLE_GDC_FOR_SM90=1)
endif()

set(CUTLASS_ENABLE_SYNCLOG OFF CACHE BOOL "Enable synchronization event logging for race condition debugging. WARNING: This redefines __syncthreads() and __syncwarp() in all downstream code!")

if (CUTLASS_ENABLE_SYNCLOG)
set(CMAKE_CUDA_SEPARABLE_COMPILATION ON)
string(APPEND CMAKE_CXX_FLAGS " -DCUTLASS_ENABLE_SYNCLOG=1")
string(APPEND CMAKE_CUDA_FLAGS " -DCUTLASS_ENABLE_SYNCLOG=1")
endif()



Expand Down Expand Up @@ -926,12 +944,27 @@ function(cutlass_add_executable_tests NAME TARGET)

set(TEST_GROUP_NAME ${NAME})

# To run the tests from an install package with tests enabled, we need to generate test files
# that don't rely on the current directory structure in build.

set(TEST_NAME c${NAME})
set(TEST_GEN_DIR ${CMAKE_CURRENT_BINARY_DIR}/ctest/${TEST_NAME})
file(MAKE_DIRECTORY ${TEST_GEN_DIR})

set(TEST_EXE_PATH $<TARGET_FILE:${TARGET}>)
set(TEST_USE_EXTENDED_FORMAT ON)
configure_file("${CUTLASS_CTEST_TEMPLATE_FILE}" "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.cmake" @ONLY)

set(TEST_EXE_PATH $<TARGET_FILE_NAME:${TARGET}>)
set(TEST_USE_EXTENDED_FORMAT OFF) # ctest does not support extended add_test format.
configure_file("${CUTLASS_CTEST_TEMPLATE_FILE}" "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in" @ONLY)

foreach(CMD_OPTIONS_VAR IN LISTS __TEST_COMMAND_OPTIONS)

if (CMD_COUNT GREATER 1)
string(TOLOWER "${NAME}_${CMD_OPTIONS_VAR}" TEST_NAME)
string(TOLOWER "${NAME}_${CMD_OPTIONS_VAR}" TESTCASE_NAME)
else()
string(TOLOWER "${NAME}" TEST_NAME)
string(TOLOWER "${NAME}" TESTCASE_NAME)
endif()

# The following rigmarole is needed to deal with spaces and possible quotes in
Expand All @@ -945,42 +978,28 @@ function(cutlass_add_executable_tests NAME TARGET)
separate_arguments(TEST_COMMAND_OPTIONS)

add_custom_target(
${TEST_NAME}
${TESTCASE_NAME}
COMMAND
${CUTLASS_TEST_EXECUTION_ENVIRONMENT} $<TARGET_FILE:${TARGET}> ${TEST_COMMAND_OPTIONS}
DEPENDS
${TARGET}
)

if (CMD_COUNT GREATER 1)
add_dependencies(${NAME} ${TEST_NAME})
add_dependencies(${NAME} ${TESTCASE_NAME})
endif()

foreach(DEPENDEE ${__DEPENDEES})
add_dependencies(${DEPENDEE} ${TEST_NAME})
add_dependencies(${DEPENDEE} ${TESTCASE_NAME})
endforeach()

set(TEST_NAME c${TEST_NAME})
set(TESTCASE_NAME c${TESTCASE_NAME})
string(CONFIGURE "${_INLINE_PER_TEST_CODE_TEMPLATE}" _TEST_CODE @ONLY)
string(APPEND _INLINE_PER_TEST_CODE "${_TEST_CODE}")
file(APPEND "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.cmake" "${_TEST_CODE}")
file(APPEND "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in" "${_TEST_CODE}")

endforeach()

# To run the tests from an install package with tests enabled, we need to generate test files
# that don't rely on the current directory structure in build.

set(TEST_NAME c${NAME})
set(TEST_GEN_DIR ${CMAKE_CURRENT_BINARY_DIR}/ctest/${TEST_NAME})
file(MAKE_DIRECTORY ${TEST_GEN_DIR})

set(TEST_EXE_PATH $<TARGET_FILE:${TARGET}>)
set(TEST_USE_EXTENDED_FORMAT ON)
configure_file("${CUTLASS_CTEST_TEMPLATE_FILE}" "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.cmake" @ONLY)

set(TEST_EXE_PATH $<TARGET_FILE_NAME:${TARGET}>)
set(TEST_USE_EXTENDED_FORMAT OFF) # ctest does not support extended add_test format.
configure_file("${CUTLASS_CTEST_TEMPLATE_FILE}" "${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.install.cmake.in" @ONLY)

# The following line imports the tests for immediate run via `make test`.

include(${TEST_GEN_DIR}/CTestTestfile.${TEST_NAME}.cmake)
Expand Down
8 changes: 8 additions & 0 deletions PUBLICATIONS.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,12 @@

## 2024

- ["ShadowKV: KV Cache in Shadows for High-Throughput Long-Context LLM Inference"](https://arxiv.org/abs/2410.21465). Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong, Yuejie Chi, Beidi Chen. _arXiv_, October 2024.

- ["FLUX: Fast Software-based Communication Overlap On GPUs Through Kernel Fusion"](https://arxiv.org/abs/2406.06858). Li-Wen Chang, Wenlei Bao, Qi Hou, Chengquan Jiang, Ningxin Zheng, Yinmin Zhong, Xuanrun Zhang, Zuquan Song, Chengji Yao, Ziheng Jiang, Haibin Lin, Xin Jin, Xin Liu. _arXiv_, June 2024.

- ["EVT: Accelerating Deep Learning Training with Epilogue Visitor Tree"](https://dl.acm.org/doi/10.1145/3620666.3651369). Zhaodong Chen, Andrew Kerr, Richard Cai, Jack Kosaian, Haicheng Wu, Yufei Ding, and Yuan Xie. _Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems_, April 2024.

- ["Faster Neighborhood Attention: Reducing the O(n^2) Cost of Self Attention at the Threadblock Level"](https://arxiv.org/abs/2403.04690). Ali Hassani, Wen-Mei Hwu, Humphrey Shi. _arXiv_, March 2024.

## 2023
Expand All @@ -24,6 +30,8 @@

- ["Mixed Precision Post Training Quantization of Neural Networks with Sensitivity Guided Search"](https://arxiv.org/abs/2302.01382). Clemens JS Schaefer, Elfie Guo, Caitlin Stanton, Xiaofan Zhang, Tom Jablin, Navid Lambert-Shirzad, Jian Li, Chiachen Chou, Siddharth Joshi, Yu Emma Wang. _arXiv_, Feburary 2023.

- ["Dynamic N:M Fine-Grained Structured Sparse Attention Mechanism"](https://dl.acm.org/doi/abs/10.1145/3572848.3577500). Zhaodong Chen, Zheng Qu, Yuying Quan, Liu Liu, Yufei Ding, Yuan Xie. _Proceedings of the 28th ACM SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming_, Feburary 2023.

- ["Stream-K: Work-centric Parallel Decomposition for Dense Matrix-Matrix Multiplication on the GPU"](https://arxiv.org/abs/2301.03598). Muhammad Osama, Duane Merrill, Cris Cecka, Michael Garland, John D. Owens. _arXiv_, January 2023.

## 2022
Expand Down
Loading

0 comments on commit d14823d

Please sign in to comment.