generated from MichaelCurrin/gh-pages-no-jekyll
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
55fd20b
commit 1ec2a35
Showing
1 changed file
with
49 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
https://zhuanlan.zhihu.com/p/58523720 | ||
|
||
# 热力学第二定律 | ||
1. 开尔文:不可能从单一热源吸收热量,使之完全变为有用的功而不产生其他影响("单一热源"指温度均匀并且恒定不变的热源,"其他影响"是指除了从单一热源吸热,把所吸收的热全部用来做功以外的其他任何变化 | ||
2. 克劳修斯:不可能把热量从低温物体转移到高温物体而不引起其他变化 | ||
”其他影响“、”其他变化“包括机器状态的变化 | ||
两种表述等价: | ||
若有一个热机违反1,则将其与一个卡诺热机相连,使其对卡诺机做功逆向运行,就违反了2,故2推出1 | ||
若有一个热机违反2,则使其在另一个热机运行后把能量重新运回去就违反了1,故1推出2 | ||
|
||
# 卡诺定理 | ||
任意热机效率小于等于可逆热机,等号当且仅当可逆热机 | ||
|
||
一个热机从 $T_1$ 处吸收 $Q$ 的热量,做 $\eta Q$ 的功,在 $T_2$ 处释放 $(1-\eta)Q$ 的热量 | ||
将其与一个效率为 $\eta'$ 可逆热机连接(该可逆热机反向运转) | ||
|
||
则运行一次 $T_2$ 处少了 $(\frac{\eta}{\eta'}-1)Q$ 的热量,$T_1$ 处多了相应的热量 | ||
|
||
那么必须 $\eta\le \eta'$ 否则违背热力学第二定律 | ||
|
||
若该热机不可逆,则 $\eta<\eta'$ 否则整个循环不产生任何影响,违背不可逆性 | ||
若该热机可逆,则有 $\eta\le\eta'$ 和 $\eta'\le\eta$ 故 $\eta=\eta'$ | ||
|
||
# 克劳修斯不等式 | ||
$\oint \frac{\delta Q}{T}\le0$ 等号当且仅当在可逆循环取到 | ||
|
||
把一个循环分解成无数个卡诺循环和不可逆的类似循环 | ||
|
||
每个小循环满足 $\frac{Q_1}{T_1}+\frac{Q_2}{T_2}\le 0$ (由卡诺定理 | ||
|
||
全部积起来即可得证 | ||
|
||
# 熵 | ||
可逆过程中,$dS=\frac{\delta Q}{T}$ | ||
|
||
# 熵增原理 | ||
对于一个从 $A$ 到 $B$ 的过程,补上一个从 $B$ 到 $A$ 的可逆过程形成循环 | ||
|
||
$\int_{A}^{B} \frac{\delta Q}{T} + \int_{B}^{A} \frac{\delta Q_{rev}}{T_{rev}}=\int_{A}^{B} \frac{\delta Q}{T}+S_A-S_B\le 0$ | ||
|
||
$\int_{A}^{B} \frac{\delta Q}{T} \le S_B-S_A$ | ||
|
||
# 用体积和温度表示熵 | ||
假设物质的量不变 | ||
|
||
$dQ=dU+PdV=\frac{i}{2}nRdT+nRT\frac{dV}{V}=nR[\frac{i}{2}dT+T\frac{dV}{V}]$ | ||
$S(V_B,T_B)-S(V_A,T_A)=\int_{A}^{B} \frac{dQ}{T}=\int_{A}^{B}nR[\frac{i}{2}\frac{dT}{T}+\frac{dV}{V}]=nR[\frac{i}{2}\ln\frac{T_B}{T_A}+\ln\frac{V_B}{V_A}]$ | ||
$S(V,T)=nR[\frac{i}{2}\ln T+\ln{V}]+a$($a$ 叫做化学常数 | ||
另一种形式 $S(V,T)=Nk[\frac{1}{\gamma-1}\ln T+\ln V]+a$ |