Skip to content

Official PyTorch implementation of Learning Dense Correspondences between Photos and Sketches, ICML 2023.

License

Notifications You must be signed in to change notification settings

cogtoolslab/photo-sketch-correspondence

Repository files navigation

Learning Dense Correspondences between Photos and Sketches

We introduce a new benchmark and a weakly-supervised method for learning the dense correspondences between photos and sketches. This repository is the official PyTorch implementation of our paper:

Learning Dense Correspondences between Photos and Sketches, Xuanchen Lu, Xiaolong Wang, Judith Fan, ICML 2023.

Links

PSC6K Benchmark

We develop a novel sketch-photo correspondence benchmark, PSC6K, augmenting the Sketchy dataset with fine-grained keypoint annotations. Our benchmark contains 150,000 annotations across 6,250 photo-sketch pairs from 125 object categories. Please see PSC6K Benchmark README for detailed instructions for downloading and usage.

PSC6K Benchmark (keypoint annotations): Amazon S3
Sketchy Dataset (photo-sketch images): Official Page | Google Drive

Environmental Setup

You can set up the environment following the scripts below. While the script uses Python 3.9 and PyTorch 1.13, the code might be able to run on earlier versions, such as Python 3.7 and PyTorch 1.8.

conda create -n psc python=3.9 -y
conda activate psc
conda install pytorch==1.13.0 torchvision==0.14.0 torchaudio==0.13.0 pytorch-cuda=11.6 -c pytorch -c nvidia
conda install pandas matplotlib seaborn
conda install -c conda-forge tqdm scikit-learn
pip install kornia tensorboard opencv-python-headless

Data Preparation

After you download the Sketchy dataset and our PSC6K benchmark following PSC6K Benchmark README, you can unzip them into an arbitrary directory.

The expected file structure is as follows:

PSC6K
├── README.md
├── ...
├── train_pairs_ps.csv
├── test_pairs_ps.csv
├── train_pairs_st.csv
├── test_pairs_st.csv

Sketchy  # We keep the original file structure from the Sketchy dataset
├── rendered_256x256
│   ├── README.txt
│   ├── 256x256
│   │   ├── photo
│   │   │   ├── tx_000100000000
│   │   │   │   ├── ant
│   │   │   │   ├── ape
│   │   │   │   ├── apple
│   │   │   │   ├── ...
│   │   │   │   ├── zebra
│   │   │   ├── ...
│   │   ├── sketch
│   │   │   ├── tx_000100000000
│   │   │   │   ├── ant
│   │   │   │   ├── ape
│   │   │   │   ├── apple
│   │   │   │   ├── ...
│   │   │   │   ├── zebra
│   │   │   ├── ...

Training and Evaluation

Training Feature Encoder

# example: training feature encoder with ResNet-18 backbone 
python train_psc.py --data-path path/to/Sketchy --csv-path path/to/PSC6K \
                    --save-dir path/to/weights/saving --log-dir path/to/logging \
                    --resume-pretrained-encoder path/to/imagenet/pretrained/weights \
                    --task encoder --arch resnet18 \
                    --lr 0.03 --knn-freq 5 -j 16

The training script will save weights to path/to/weights/saving, with the name resnet18_cbn_encoder_pair_%hyperparameter_%time/checkpoint_%epoch.pth.tar

Training Warp Estimator

# example: training warp estimator with default parameters
python train_psc.py --data-path path/to/Sketchy --csv-path path/to/PSC6K \
                    --save-dir path/to/weights/saving --log-dir path/to/logging \
                    --resume-encoder path/of/model/weights \
                    --task estimator --arch resnet18 \
                    --lr 0.003 --pck-freq 5 \
                    --sim-loss 0.1 --con-loss 1.0 -j 16

The training script will save weights to path/to/weights/saving, with the name resnet18_cbn_estimator_pair_%hyperparameter_%time/checkpoint_%epoch.pth.tar

Please see the argument parser in train_psc.py for more options.

PCK Evaluation

# example: evaluating the trained model
python eval.py --data-path path/to/Sketchy --csv-path path/to/PSC6K \
               --arch resnet18 --checkpoint path/of/model/weights

Benchmark Results

Model PCK @ 0.05 PCK @ 0.10 ImageNet-pretrained Weights PSCNet Weights
ResNet-18 56.38 83.22 MoCo weights weights
ResNet-101 58.00 84.93 MoCo weights weights

The "ImageNet-pretrained weights" are trained with MoCo v2 on ImageNet-2012.

Citation

If you find our work useful to your research, please cite:

@article{lu2023learning,
  author    = {Lu, Xuanchen and Wang, Xiaolong and Fan, Judith E},
  title     = {Learning Dense Correspondences between Photos and Sketches},
  journal   = {International Conference on Machine Learning},
  year      = {2023},
}

About

Official PyTorch implementation of Learning Dense Correspondences between Photos and Sketches, ICML 2023.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Languages