Skip to content

Commit

Permalink
add: 2.16 task1 01~05
Browse files Browse the repository at this point in the history
colourfulspring committed Feb 20, 2024
1 parent 1c0bbff commit eeb822c
Showing 48 changed files with 365 additions and 0 deletions.
18 changes: 18 additions & 0 deletions Project/ProjectSettings/BurstAotSettings_StandaloneWindows.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,18 @@
{
"MonoBehaviour": {
"Version": 4,
"EnableBurstCompilation": true,
"EnableOptimisations": true,
"EnableSafetyChecks": false,
"EnableDebugInAllBuilds": false,
"DebugDataKind": 1,
"EnableArmv9SecurityFeatures": false,
"CpuMinTargetX32": 0,
"CpuMaxTargetX32": 0,
"CpuMinTargetX64": 0,
"CpuMaxTargetX64": 0,
"CpuTargetsX32": 6,
"CpuTargetsX64": 72,
"OptimizeFor": 0
}
}
31 changes: 31 additions & 0 deletions tensorboard_data_01_copy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import os
import shutil

# Source directory where files are located
source_dir = os.path.join(os.getcwd(), "results")

# Destination directory where files will be copied
destination_dir = os.path.join(os.getcwd(), "tensorboard_data_copy_01_results")

# Find all files in the source directory starting with "events"
files = []
for root, dirs, filenames in os.walk(source_dir):
for filename in filenames:
if filename.startswith('events'):
files.append(os.path.join(root, filename))

# Loop through each file found
for file_path in files:
# Get the directory where the file is located relative to the source directory
relative_dir = os.path.relpath(os.path.dirname(file_path), source_dir)

# Create the corresponding directory structure in the destination directory
os.makedirs(os.path.join(destination_dir, relative_dir), exist_ok=True)

# Copy the file to the destination directory, preserving the directory structure
shutil.copy(file_path, os.path.join(destination_dir, relative_dir))

# Print out the copied files
print(f"Copied {file_path} to {os.path.join(destination_dir, relative_dir)}")

print("Copy operation completed.")
64 changes: 64 additions & 0 deletions tensorboard_data_02_json.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,64 @@
import os
import json
from tensorboard.backend.event_processing.event_accumulator import EventAccumulator, ScalarEvent

def scalar_event_list_to_dict_list(scalar_event_list):
dict_list = []
for scalar_event in scalar_event_list:
# remove wall_time
dict_list.append({'step': scalar_event.step, 'value': scalar_event.value})
return dict_list


def convert_to_json(events_file_path, output_json_path):
accumulator = EventAccumulator(events_file_path)
accumulator.Reload() # loads events from the file

# Get a List[ScalarEvents]
scalar_events = accumulator.Scalars('Environment/Cumulative Reward')

# Convert the List[ScalarEvents] to List[Dict]
dict_list = scalar_event_list_to_dict_list(scalar_events)

# Dump json from List[Dict], then write JSON to a file
with open(output_json_path, "w") as json_file:
json.dump(dict_list, json_file)


if __name__ == "__main__":

# Source directory where files are located
source_dir = os.path.join(os.getcwd(), "tensorboard_data_copy_01_results")

# Destination directory where files will be copied
destination_dir = os.path.join(os.getcwd(), "tensorboard_data_json_02_results")

# Find all files in the source directory starting with "events"
files = []
for root, dirs, filenames in os.walk(source_dir):
for filename in filenames:
if filename.startswith('events'):
files.append(os.path.join(root, filename))

# Loop through each file found
for file_path in files:
# Get the directory where the file is located relative to the source directory
relative_dir = os.path.relpath(os.path.dirname(file_path), source_dir)

# Create the corresponding directory structure in the destination directory
os.makedirs(os.path.join(destination_dir, relative_dir), exist_ok=True)

# Define the new filename with '.json' extension
json_filename = os.path.splitext(os.path.basename(file_path))[0] + '.json'

# Define the new path of .json file
json_filepath = os.path.join(destination_dir, relative_dir, json_filename)

# Convert tensorboard events file to json
convert_to_json(file_path, json_filepath)

# Print out the coverted files
print(f"Covert {file_path} to {json_filepath}")

print("Convert operation completed.")

58 changes: 58 additions & 0 deletions tensorboard_data_03_numpy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
import os
import json
import numpy as np


def convert_to_npy(json_file_path, output_npy_path):
# Load the JSON file
with open(json_file_path, 'r') as f:
json_data = json.load(f)

# Extract 'step' and 'value' from the list of dictionaries
steps = np.array([d['step'] for d in json_data])
values = np.array([d['value'] for d in json_data])

# Combine 'steps' and 'values' arrays into a single 2D array
combined_array = np.array([steps, values])

# Save the arrays into separate files
np.save(output_npy_path, combined_array)


if __name__ == "__main__":

# Source directory where files are located
source_dir = os.path.join(os.getcwd(), "tensorboard_data_json_02_results")

# Destination directory where files will be copied
destination_dir = os.path.join(os.getcwd(), "tensorboard_data_numpy_03_results")

# Find all files in the source directory starting with "events"
files = []
for root, dirs, filenames in os.walk(source_dir):
for filename in filenames:
if filename.startswith('events'):
files.append(os.path.join(root, filename))

# Loop through each file found
for file_path in files:
# Get the directory where the file is located relative to the source directory
relative_dir = os.path.relpath(os.path.dirname(file_path), source_dir)

# Create the corresponding directory structure in the destination directory
os.makedirs(os.path.join(destination_dir, relative_dir), exist_ok=True)

# Define the new filename with '.npy' extension
npy_filename = os.path.splitext(os.path.basename(file_path))[0] + '.npy'

# Define the new path of .npy file
npy_filepath = os.path.join(destination_dir, relative_dir, npy_filename)

# Convert json to step.npy and value.npy
convert_to_npy(file_path, npy_filepath)

# Print out the coverted files
print(f"Covert {file_path} to {npy_filepath}")

print("Convert operation completed.")

66 changes: 66 additions & 0 deletions tensorboard_data_04_merged_numpy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
import os
import numpy as np


if __name__ == "__main__":

# Source directory where files are located
source_dir = os.path.join(os.getcwd(), "tensorboard_data_numpy_03_results")

# Destination directory where files will be copied
destination_dir = os.path.join(os.getcwd(), "tensorboard_data_merged_numpy_04_results")

# Find all files in the source directory starting with "events"
files = []
for root, dirs, filenames in os.walk(source_dir):
normal_root = os.path.normpath(root)
for filename in filenames:
version = os.path.split(normal_root)[-2]
if filename.startswith('events') and any(sub in version for sub in ('v5.0.1', 'v5.1.0', 'v5.2.0')) :
files.append(os.path.join(root, filename))

values = 0

# Loop through each file found
for num, file_path in enumerate(files):
# Get the directory where the file is located relative to the source directory
relative_dir = os.path.relpath(os.path.dirname(file_path), source_dir)

# Split the directory specifying the version number, va.b.c-d
first_level_dir = os.path.split(relative_dir.rstrip(os.sep))[0]

# Split the version number to get va.b.c
version_number = first_level_dir.split('-')[0]

# Load the data
data = np.load(file_path)

# Extract steps and values
steps = data[0]
values = values + data[1]

# Merge results from many seeds
if num % 3 == 2:
values = values / 3

# Create the corresponding directory structure in the destination directory
os.makedirs(os.path.join(destination_dir, relative_dir), exist_ok=True)

# Define the new filename with '.npy' extension
npy_filename = os.path.splitext(os.path.basename(file_path))[0] + '.npy'

# Define the new path of .npy file
npy_filepath = os.path.join(destination_dir, relative_dir, npy_filename)

# Convert 'steps' and 'values' arrays into a numpy array
combined_array = np.array([steps, values])

# Save the Dataframe into npy files
np.save(npy_filepath, combined_array)

print(f"Save merged pandas Dataframe {version_number}")

print(f"Add {file_path}")


print("Convert operation completed.")
81 changes: 81 additions & 0 deletions tensorboard_data_05_v5.0.x_image.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,81 @@
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

def smooth(scalars, weight): # Weight between 0 and 1
last = scalars[0] # First value in the plot (first timestep)
smoothed = list()
for point in scalars:
smoothed_val = last * weight + (1 - weight) * point # Calculate smoothed value
smoothed.append(smoothed_val) # Save it
last = smoothed_val # Anchor the last smoothed value

return smoothed

if __name__ == "__main__":

# Source directory where files are located
source_dir = os.path.join(os.getcwd(), "tensorboard_data_merged_numpy_04_results")

# Destination directory where files will be copied
destination_dir = os.path.join(os.getcwd(), "tensorboard_data_seaborn_05_results")

# Find all files in the source directory starting with "events"
files = []
for root, dirs, filenames in os.walk(source_dir):
for filename in filenames:
if filename.startswith('events'):
files.append(os.path.join(root, filename))

# Legend labels
legend_labels = {'v5.0.1': 'Pos+CNN', 'v5.1.0': 'Pos', 'v5.2.0': 'CNN'}

# Create a line plot
plt.figure(figsize=(10, 8))

# Loop through each file found
for num, file_path in enumerate(files):
# Get the directory where the file is located relative to the source directory
relative_dir = os.path.relpath(os.path.dirname(file_path), source_dir)

# Split the directory specifying the version number, va.b.c-d
first_level_dir = os.path.split(relative_dir.rstrip(os.sep))[0]

# Split the version number to get va.b.c
version_number = first_level_dir.split('-')[0]

# Read npy file into array
data = np.load(file_path)

# Extract steps and values
steps = data[0]
values = data[1]

# Smooth values
smoothed_values = smooth(values, 0.95)



plt.plot(steps, smoothed_values, linestyle='-', label=legend_labels[version_number])
print(f"Add {file_path}")

# Add labels and title
plt.xlabel('Step')
plt.ylabel('Cumulative Reward')
plt.title('Line Plot of Step vs Cumulative Reward')

# Show grid
plt.grid(True)

# Add legend
plt.legend()

# Create the corresponding directory structure in the destination directory
os.makedirs(destination_dir, exist_ok=True)

# Save the plot as a JPG file
plt.savefig(os.path.join(destination_dir, 'line_plot.jpg'), format='jpg')

print("plot operation completed.")

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
29 changes: 29 additions & 0 deletions test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import pandas as pd
# 生成数据
x = np.arange(5)

y_a = np.random.uniform(size=5)
y_b = np.random.uniform(size=5)

label_a = np.full(x.shape, fill_value='a')
label_b = np.full(x.shape, fill_value='b')

data_a = pd.DataFrame(np.concatenate((x[:, None], label_a[:, None], y_a[:, None]), axis=1),
columns=['x', 'label', 'y'])
data_b = pd.DataFrame(np.concatenate((x[:, None], label_b[:, None], y_b[:, None]), axis=1),
columns=['x', 'label', 'y'])
data = pd.concat([data_a, data_b], axis=0)

# x、y轴数据需要为数字类型,但上面的操作后会变成object,所以要进行一下转换
data[['x', 'y']] = data[['x', 'y']].apply(pd.to_numeric)
print(data)
# 设置样式
sns.set_theme(context='paper', style='darkgrid')
fig = plt.figure()
plt.title('multi lines')
# 绘图
sns.lineplot(x="x", y="y", data=data, errorbar=('sd', 1))
plt.show()

0 comments on commit eeb822c

Please sign in to comment.