Skip to content

AutoAWQ implements the AWQ algorithm for 4-bit quantization with a 2x speedup during inference.

License

Notifications You must be signed in to change notification settings

compressa-ai/AutoAWQ

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AutoAWQ

| Roadmap | Examples | Issues: Help Wanted |

Huggingface - Models GitHub - Releases PyPI - Downloads

AutoAWQ is an easy-to-use package for 4-bit quantized models. AutoAWQ speeds up models by 2x while reducing memory requirements by 3x compared to FP16. AutoAWQ implements the Activation-aware Weight Quantization (AWQ) algorithm for quantizing LLMs. AutoAWQ was created and improved upon from the original work from MIT.

Latest News 🔥

  • [2023/10] Mistral (Fused Modules), Bigcode, Turing support, Memory Bug Fix (Saves 2GB VRAM)
  • [2023/09] 1.6x-2.5x speed boost on fused models (now including MPT and Falcon).
  • [2023/09] Multi-GPU support, bug fixes, and better benchmark scripts available
  • [2023/08] PyPi package released and AutoModel class available

Install

Requirements:

  • Compute Capability 7.5 (sm75). Turing and later architectures are supported.
  • CUDA Toolkit 11.8 and later.

Install:

  • Use pip to install awq
pip install autoawq

Using conda

CUDA dependencies can be hard to manage sometimes. It is recommended to use conda with AutoAWQ:

conda create --name autoawq python=3.10 -y
conda activate autoawq
conda install pytorch=2.0.1 torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia
pip install autoawq

Build source

Build AutoAWQ from scratch

Build time can take 10 minutes. Download your model while you install AutoAWQ.

git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip install -e .

Supported models

The detailed support list:

Models Sizes
LLaMA-2 7B/13B/70B
LLaMA 7B/13B/30B/65B
Vicuna 7B/13B
MPT 7B/30B
Falcon 7B/40B
OPT 125m/1.3B/2.7B/6.7B/13B/30B
Bloom 560m/3B/7B/
GPTJ 6.7B

Usage

Under examples, you can find examples of how to quantize, run inference, and benchmark AutoAWQ models.

INT4 GEMM vs INT4 GEMV vs FP16

There are two versions of AWQ: GEMM and GEMV. Both names relate to how matrix multiplication runs under the hood. We suggest the following:

  • GEMV (quantized): Best for small context, batch size 1, highest number of tokens/s.
  • GEMM (quantized): Best for larger context, up to batch size 8, faster than GEMV on batch size > 1, slower than GEMV on batch size = 1.
  • FP16 (non-quantized): Best for large batch sizes of 8 or larger, highest throughput. We recommend TGI or vLLM.

Examples

Quantization

Expect this to take 10-15 minutes on smaller 7B models, and around 1 hour for 70B models.

from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer

model_path = 'lmsys/vicuna-7b-v1.5'
quant_path = 'vicuna-7b-v1.5-awq'
quant_config = { "zero_point": True, "q_group_size": 128, "w_bit": 4 }

# Load model
model = AutoAWQForCausalLM.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

# Quantize
model.quantize(tokenizer, quant_config=quant_config)

# Save quantized model
model.save_quantized(quant_path)
tokenizer.save_pretrained(quant_path)
Inference
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer

quant_path = "casperhansen/vicuna-7b-v1.5-awq"
quant_file = "awq_model_w4_g128.pt"

# Load model
model = AutoAWQForCausalLM.from_quantized(quant_path, quant_file, fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(quant_path, trust_remote_code=True)
streamer = TextStreamer(tokenizer, skip_special_tokens=True)

# Convert prompt to tokens
prompt_template = """\
A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.

USER: {prompt}
ASSISTANT:"""

tokens = tokenizer(
    prompt_template.format(prompt="How are you today?"), 
    return_tensors='pt'
).input_ids.cuda()

# Generate output
generation_output = model.generate(
    tokens, 
    streamer=streamer,
    max_new_tokens=512
)
AutoAWQForCausalLM.from_quantized
  • quant_path: Path to folder containing model files.
  • quant_filename: The filename to model weights or index.json file.
  • max_new_tokens: The max sequence length, used to allocate kv-cache for fused models.
  • fuse_layers: Whether or not to use fused layers.
  • batch_size: The batch size to initialize the AWQ model with.

Benchmarks

Vicuna 7B (LLaMa-2)

  • Note: Blazing fast generation, slow context processing
  • GPU: NVIDIA GeForce RTX 3090
  • Version: GEMV
  • Command: python examples/benchmark.py --model_path casperhansen/vicuna-7b-v1.5-awq-gemv
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 231.393 153.632 4.66 GB (19.68%)
1 64 64 233.909 154.475 4.66 GB (19.68%)
1 128 128 233.145 152.133 4.66 GB (19.68%)
1 256 256 228.562 147.692 4.67 GB (19.72%)
1 512 512 228.914 139.179 4.80 GB (20.26%)
1 1024 1024 227.393 125.058 5.56 GB (23.48%)
1 2048 2048 225.736 123.228 8.08 GB (34.09%)
  • Note: Fast generation, fast context processing
  • GPU: NVIDIA GeForce RTX 3090
  • Version: GEMM
  • Command: python examples/benchmark.py --model_path casperhansen/vicuna-7b-v1.5-awq
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 521.444 126.51 4.55 GB (19.21%)
1 64 64 2618.88 125.428 4.57 GB (19.31%)
1 128 128 2808.09 123.865 4.61 GB (19.44%)
1 256 256 2807.46 120.779 4.67 GB (19.72%)
1 512 512 2769.9 115.08 4.80 GB (20.26%)
1 1024 1024 2640.95 105.493 5.56 GB (23.48%)
1 2048 2048 2341.36 104.188 8.08 GB (34.09%)

MPT 7B

  • Note: Blazing fast generation, slow context processing
  • GPU: NVIDIA GeForce RTX 3090
  • Command: python examples/benchmark.py --model_path casperhansen/mpt-7b-8k-chat-awq-gemv
  • Version: GEMV
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 187.332 136.765 3.65 GB (15.42%)
1 64 64 241.026 136.476 3.67 GB (15.48%)
1 128 128 239.44 137.599 3.70 GB (15.61%)
1 256 256 233.184 137.02 3.76 GB (15.88%)
1 512 512 233.082 135.633 3.89 GB (16.41%)
1 1024 1024 231.504 122.197 4.40 GB (18.57%)
1 2048 2048 228.307 121.468 5.92 GB (24.98%)
  • Note: Fast generation, fast context processing
  • GPU: NVIDIA GeForce RTX 3090
  • Version: GEMM
  • Command: python examples/benchmark.py --model_path casperhansen/mpt-7b-8k-chat-awq
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 557.714 118.567 3.65 GB (15.42%)
1 64 64 2752.9 120.772 3.67 GB (15.48%)
1 128 128 2982.67 119.52 3.70 GB (15.61%)
1 256 256 3009.16 116.911 3.76 GB (15.88%)
1 512 512 2901.91 111.607 3.95 GB (16.68%)
1 1024 1024 2718.68 102.623 4.40 GB (18.57%)
1 2048 2048 2363.61 101.368 5.92 GB (24.98%)

Falcon 7B

  • Note: Fast generation, fast context processing
  • GPU: NVIDIA GeForce RTX 3090
  • Command: python examples/benchmark.py --model_path casperhansen/falcon-7b-awq --quant_file awq_model_w4_g64.pt
  • Version: GEMM
Batch Size Prefill Length Decode Length Prefill tokens/s Decode tokens/s Memory (VRAM)
1 32 32 466.826 95.1413 4.47 GB (18.88%)
1 64 64 1920.61 94.5963 4.48 GB (18.92%)
1 128 128 2406.1 94.793 4.48 GB (18.92%)
1 256 256 2521.08 94.1144 4.48 GB (18.92%)
1 512 512 2478.28 93.4123 4.48 GB (18.92%)
1 1024 1024 2256.22 94.0237 4.69 GB (19.78%)
1 2048 2048 1831.71 94.2032 6.83 GB (28.83%)

Reference

If you find AWQ useful or relevant to your research, you can cite their paper:

@article{lin2023awq,
  title={AWQ: Activation-aware Weight Quantization for LLM Compression and Acceleration},
  author={Lin, Ji and Tang, Jiaming and Tang, Haotian and Yang, Shang and Dang, Xingyu and Han, Song},
  journal={arXiv},
  year={2023}
}

About

AutoAWQ implements the AWQ algorithm for 4-bit quantization with a 2x speedup during inference.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 39.7%
  • Python 32.4%
  • Cuda 26.9%
  • Other 1.0%