-
Notifications
You must be signed in to change notification settings - Fork 54
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
a99a849
commit 40e0ea5
Showing
2 changed files
with
177 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
embeddings/ | ||
*.npy | ||
old/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
import argparse | ||
import time | ||
|
||
import imageio.v3 as imageio | ||
import micro_sam.instance_segmentation as instance_seg | ||
import micro_sam.prompt_based_segmentation as seg | ||
import micro_sam.util as util | ||
import numpy as np | ||
import pandas as pd | ||
|
||
from micro_sam.sample_data import fetch_livecell_example_data | ||
|
||
|
||
def _get_image_and_predictor(model_type, device): | ||
example_data = fetch_livecell_example_data("../examples/data") | ||
image = imageio.imread(example_data) | ||
predictor = util.get_sam_model(device, model_type) | ||
return image, predictor | ||
|
||
|
||
def _add_result(benchmark_results, model_type, device, name, runtimes): | ||
nres = len(name) | ||
assert len(name) == len(runtimes) | ||
res = { | ||
"model": [model_type] * nres, | ||
"device": [device] * nres, | ||
"benchmark": name, | ||
"runtime": runtimes, | ||
} | ||
tab = pd.DataFrame(res) | ||
benchmark_results.append(tab) | ||
return benchmark_results | ||
|
||
|
||
def benchmark_embeddings(image, predictor, n=3): | ||
print("Running benchmark_embeddings ...") | ||
times = [] | ||
for _ in range(n): | ||
t0 = time.time() | ||
util.precompute_image_embeddings(predictor, image) | ||
times.append(time.time() - t0) | ||
runtime = np.mean(times) | ||
return ["embeddings"], [runtime] | ||
|
||
|
||
def benchmark_prompts(image, predictor, n=10): | ||
print("Running benchmark_prompts ...") | ||
names, runtimes = [], [] | ||
|
||
embeddings = util.precompute_image_embeddings(predictor, image) | ||
np.random.seed(42) | ||
|
||
names, runtimes = [], [] | ||
|
||
# from random single point | ||
times = [] | ||
for _ in range(n): | ||
t0 = time.time() | ||
points = np.array([ | ||
np.random.randint(0, image.shape[0]), | ||
np.random.randint(0, image.shape[1]), | ||
])[None] | ||
labels = np.array([1]) | ||
seg.segment_from_points(predictor, points, labels, embeddings) | ||
times.append(time.time() - t0) | ||
names.append("prompt-p1n0") | ||
runtimes.append(np.min(times)) | ||
|
||
# from random 2p4n | ||
times = [] | ||
for _ in range(n): | ||
t0 = time.time() | ||
points = np.concatenate([ | ||
np.random.randint(0, image.shape[0], size=6)[:, None], | ||
np.random.randint(0, image.shape[1], size=6)[:, None], | ||
], axis=1) | ||
labels = np.array([1, 1, 0, 0, 0, 0]) | ||
seg.segment_from_points(predictor, points, labels, embeddings) | ||
times.append(time.time() - t0) | ||
names.append("prompt-p2n4") | ||
runtimes.append(np.min(times)) | ||
|
||
# from bounding box | ||
times = [] | ||
for _ in range(n): | ||
t0 = time.time() | ||
box_size = np.random.randint(20, 100, size=2) | ||
box_start = [ | ||
np.random.randint(0, image.shape[0] - box_size[0]), | ||
np.random.randint(0, image.shape[1] - box_size[1]), | ||
] | ||
box = np.array([ | ||
box_start[0], box_start[1], | ||
box_start[0] + box_size[0], box_start[1] + box_size[1], | ||
]) | ||
seg.segment_from_box(predictor, box, embeddings) | ||
times.append(time.time() - t0) | ||
names.append("prompt-box") | ||
runtimes.append(np.min(times)) | ||
|
||
# from bounding box and points | ||
times = [] | ||
for _ in range(n): | ||
t0 = time.time() | ||
points = np.concatenate([ | ||
np.random.randint(0, image.shape[0], size=6)[:, None], | ||
np.random.randint(0, image.shape[1], size=6)[:, None], | ||
], axis=1) | ||
labels = np.array([1, 1, 0, 0, 0, 0]) | ||
box_size = np.random.randint(20, 100, size=2) | ||
box_start = [ | ||
np.random.randint(0, image.shape[0] - box_size[0]), | ||
np.random.randint(0, image.shape[1] - box_size[1]), | ||
] | ||
box = np.array([ | ||
box_start[0], box_start[1], | ||
box_start[0] + box_size[0], box_start[1] + box_size[1], | ||
]) | ||
seg.segment_from_box_and_points(predictor, box, points, labels, embeddings) | ||
times.append(time.time() - t0) | ||
names.append("prompt-box-and-points") | ||
runtimes.append(np.min(times)) | ||
|
||
return names, runtimes | ||
|
||
|
||
def benchmark_amg(image, predictor, n=3): | ||
print("Running benchmark_amg ...") | ||
embeddings = util.precompute_image_embeddings(predictor, image) | ||
amg = instance_seg.AutomaticMaskGenerator(predictor) | ||
times = [] | ||
for _ in range(n): | ||
t0 = time.time() | ||
amg.initialize(image, embeddings) | ||
amg.generate() | ||
times.append(time.time() - t0) | ||
runtime = np.mean(times) | ||
return ["amg"], [runtime] | ||
|
||
|
||
def main(): | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument("--model_type", "-m", default="vit_h") | ||
parser.add_argument("--device", "-d") | ||
parser.add_argument("--benchmark_embeddings", "-e", action="store_false") | ||
parser.add_argument("--benchmark_prompts", "-p", action="store_false") | ||
parser.add_argument("--benchmark_amg", "-a", action="store_false") | ||
|
||
args = parser.parse_args() | ||
|
||
model_type = args.model_type | ||
device = util._get_device(args.device) | ||
print("Running benchmarks for", model_type) | ||
print("with device:", device) | ||
|
||
image, predictor = _get_image_and_predictor(model_type, device) | ||
|
||
benchmark_results = [] | ||
if args.benchmark_embeddings: | ||
name, rt = benchmark_embeddings(image, predictor) | ||
benchmark_results = _add_result(benchmark_results, model_type, device, name, rt) | ||
|
||
if args.benchmark_prompts: | ||
name, rt = benchmark_prompts(image, predictor) | ||
benchmark_results = _add_result(benchmark_results, model_type, device, name, rt) | ||
|
||
if args.benchmark_amg: | ||
name, rt = benchmark_amg(image, predictor) | ||
benchmark_results = _add_result(benchmark_results, model_type, device, name, rt) | ||
|
||
benchmark_results = pd.concat(benchmark_results) | ||
print(benchmark_results.to_markdown(index=False)) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |