Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Make caching embeddings optional for evaluation scripts #759

Merged
merged 3 commits into from
Oct 25, 2024
Merged
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 22 additions & 8 deletions micro_sam/evaluation/inference.py
Original file line number Diff line number Diff line change
Expand Up @@ -550,9 +550,13 @@ def run_amg(
iou_thresh_values: Optional[List[float]] = None,
stability_score_values: Optional[List[float]] = None,
peft_kwargs: Optional[Dict] = None,
cache_embeddings: bool = False
) -> str:
embedding_folder = os.path.join(experiment_folder, "embeddings") # where the precomputed embeddings are saved
os.makedirs(embedding_folder, exist_ok=True)
if cache_embeddings:
embedding_folder = os.path.join(experiment_folder, "embeddings") # where the precomputed embeddings are saved
os.makedirs(embedding_folder, exist_ok=True)
else:
embedding_folder = None

predictor = util.get_sam_model(model_type=model_type, checkpoint_path=checkpoint, peft_kwargs=peft_kwargs)
amg = AutomaticMaskGenerator(predictor)
Expand All @@ -572,9 +576,15 @@ def run_amg(
)

instance_segmentation.run_instance_segmentation_grid_search_and_inference(
amg, grid_search_values,
val_image_paths, val_gt_paths, test_image_paths,
embedding_folder, prediction_folder, gs_result_folder,
segmenter=amg,
grid_search_values=grid_search_values,
val_image_paths=val_image_paths,
val_gt_paths=val_gt_paths,
test_image_paths=test_image_paths,
embedding_dir=embedding_folder,
prediction_dir=prediction_folder,
result_dir=gs_result_folder,
experiment_folder=experiment_folder,
)
return prediction_folder

Expand All @@ -592,9 +602,13 @@ def run_instance_segmentation_with_decoder(
val_gt_paths: List[Union[str, os.PathLike]],
test_image_paths: List[Union[str, os.PathLike]],
peft_kwargs: Optional[Dict] = None,
cache_embeddings: bool = False,
) -> str:
embedding_folder = os.path.join(experiment_folder, "embeddings") # where the precomputed embeddings are saved
os.makedirs(embedding_folder, exist_ok=True)
if cache_embeddings:
embedding_folder = os.path.join(experiment_folder, "embeddings") # where the precomputed embeddings are saved
os.makedirs(embedding_folder, exist_ok=True)
else:
embedding_folder = None

predictor, decoder = get_predictor_and_decoder(
model_type=model_type, checkpoint_path=checkpoint, peft_kwargs=peft_kwargs,
Expand All @@ -616,6 +630,6 @@ def run_instance_segmentation_with_decoder(
segmenter, grid_search_values,
val_image_paths, val_gt_paths, test_image_paths,
embedding_dir=embedding_folder, prediction_dir=prediction_folder,
result_dir=gs_result_folder,
result_dir=gs_result_folder, experiment_folder=experiment_folder,
)
return prediction_folder
17 changes: 11 additions & 6 deletions micro_sam/evaluation/instance_segmentation.py
Original file line number Diff line number Diff line change
Expand Up @@ -276,12 +276,15 @@ def run_instance_segmentation_inference(
assert os.path.exists(image_path), image_path
image = imageio.imread(image_path)

embedding_path = os.path.join(embedding_dir, f"{os.path.splitext(image_name)[0]}.zarr")
image_embeddings = util.precompute_image_embeddings(
predictor, image, embedding_path, ndim=2, verbose=verbose_embeddings
)
if embedding_dir is None:
segmenter.initialize(image)
else:
embedding_path = os.path.join(embedding_dir, f"{os.path.splitext(image_name)[0]}.zarr")
image_embeddings = util.precompute_image_embeddings(
predictor, image, embedding_path, ndim=2, verbose=verbose_embeddings
)
segmenter.initialize(image, image_embeddings)

segmenter.initialize(image, image_embeddings)
masks = segmenter.generate(**generate_kwargs)

if len(masks) == 0: # the instance segmentation can have no masks, hence we just save empty labels
Expand Down Expand Up @@ -362,6 +365,7 @@ def run_instance_segmentation_grid_search_and_inference(
test_image_paths: List[Union[str, os.PathLike]],
embedding_dir: Union[str, os.PathLike],
prediction_dir: Union[str, os.PathLike],
experiment_folder: Union[str, os.PathLike],
result_dir: Union[str, os.PathLike],
fixed_generate_kwargs: Optional[Dict[str, Any]] = None,
verbose_gs: bool = True,
Expand All @@ -379,6 +383,7 @@ def run_instance_segmentation_grid_search_and_inference(
test_image_paths: The input images for inference.
embedding_dir: Folder to cache the image embeddings.
prediction_dir: Folder to save the predictions.
experiment_dir: Folder for caching best grid search parameters in 'results'.
constantinpape marked this conversation as resolved.
Show resolved Hide resolved
result_dir: Folder to cache the evaluation results per image.
fixed_generate_kwargs: Fixed keyword arguments for the `generate` method of the segmenter.
verbose_gs: Whether to run the gridsearch for individual images in a verbose mode.
Expand All @@ -394,7 +399,7 @@ def run_instance_segmentation_grid_search_and_inference(
print("Best grid-search result:", best_msa, "with parmeters:\n", best_param_str)
print()

save_grid_search_best_params(best_kwargs, best_msa, Path(embedding_dir).parent)
save_grid_search_best_params(best_kwargs, best_msa, experiment_folder)

generate_kwargs = {} if fixed_generate_kwargs is None else fixed_generate_kwargs
generate_kwargs.update(best_kwargs)
Expand Down
Loading