Skip to content

Commit

Permalink
Struggling with Traced
Browse files Browse the repository at this point in the history
This is just bunch of commented out code, that I am struggling with.
I can see how this one should hold.  From the well foundedness we can
get `b₁` and `b₂` which bundled with input could be fed to the
function `f` and leter projected away.  However this means that the
sides of `cong` operation are _slightly_ different.
  • Loading branch information
jkopanski committed Feb 5, 2024
1 parent 6549ad8 commit 51b19fc
Showing 1 changed file with 38 additions and 0 deletions.
38 changes: 38 additions & 0 deletions src/Felix/Instances/Setoid/Raw.agda
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,44 @@ module setoid-raw-instances where instance
}
}

-- traced : {c ℓ} Traced {obj = Setoid (c ⊔ ℓ) (c ⊔ ℓ)} _⟶_
-- traced = record
-- { WF = λ {A} {S} {B} f →
-- let open Setoid (B × S)
-- in ∀ x → ∃₂ λ y z → Func.to f (x , z) ≈ (y , z)
-- ; trace = λ {A} {S} {B} f wf → record
-- { to = proj₁ ∘ᵈ wf
-- -- (eq : x ≈ y) → proj₁ (wf x) ≈ proj₁ (wf y)
-- ; cong = λ {x} {y} eq → {!!}
-- -- Setoid.reflexive {!!} (≡.cong {!wf!} {!eq!})
-- -- let (a₁ , (b₁ , (fx≈a₁ , eq₁))) = wf x
-- -- -- (a₁ , (b₁ , f[x×b₁]≈[a₁×b₁])) = wf x
-- -- (a₂ , (b₂ , (fy≈a₂ , eq₂))) = wf y
-- -- f₁ : A ⟶ B × S
-- -- f₁ = f ∘ constʳ (Const.function _ S b₁)
-- -- f₂ = f ∘ constʳ (Const.function _ S b₂)
-- -- -- a₁ ≈ a₂
-- -- in Setoid.trans B (Setoid.sym B fx≈a₁) (Setoid.trans {!!} {!Func.cong f eq!} fy≈a₂)
-- -- ⟨ constʳ b₁ ⟩
-- -- a₁×b₁
-- -- ⟨ sym f[x×b₁]≈[a₁×b₁] ⟩
-- -- Func.to f x×b₁
-- -- ⟨ ? ⟩
-- -- x×b₁
-- -- x
-- -- ⟨ eq ⟩
-- -- y
-- -- ⟨ constʳ b₂ ⟩
-- -- y×b₂
-- -- ⟨ Func.to f y×b₁ ⟩
-- -- Func.to f y×b₁
-- -- ⟨ f[y×b₂]≈[a₂×b₂] ⟩
-- -- a₂×b₂
-- -- sym ⟨ constʳ b₂ ⟩
-- -- a₂
-- }
-- }

cartesianClosed :
{c ℓ}
CartesianClosed ⦃ products {c ⊔ ℓ} {c ⊔ ℓ} ⦄ ⦃ exponentials {c} {ℓ} ⦄ _⟶_
Expand Down

0 comments on commit 51b19fc

Please sign in to comment.