Skip to content

Commit

Permalink
[Bugfix] Fix prefix strings for quantized VLMs (vllm-project#9772)
Browse files Browse the repository at this point in the history
  • Loading branch information
mgoin authored Oct 29, 2024
1 parent 8d77241 commit bc73e98
Show file tree
Hide file tree
Showing 20 changed files with 288 additions and 97 deletions.
11 changes: 8 additions & 3 deletions vllm/model_executor/model_loader/loader.py
Original file line number Diff line number Diff line change
Expand Up @@ -147,15 +147,20 @@ def _get_model_initialization_kwargs(
return extra_kwargs


def build_model(model_class: Type[nn.Module], hf_config: PretrainedConfig,
def build_model(model_class: Type[nn.Module],
hf_config: PretrainedConfig,
cache_config: Optional[CacheConfig],
quant_config: Optional[QuantizationConfig], *,
quant_config: Optional[QuantizationConfig],
*,
lora_config: Optional[LoRAConfig],
multimodal_config: Optional[MultiModalConfig],
scheduler_config: Optional[SchedulerConfig]) -> nn.Module:
scheduler_config: Optional[SchedulerConfig],
prefix: Optional[str] = None) -> nn.Module:
extra_kwargs = _get_model_initialization_kwargs(model_class, lora_config,
multimodal_config,
scheduler_config)
if prefix:
extra_kwargs["prefix"] = prefix

return model_class(config=hf_config,
cache_config=cache_config,
Expand Down
5 changes: 4 additions & 1 deletion vllm/model_executor/models/blip2.py
Original file line number Diff line number Diff line change
Expand Up @@ -507,7 +507,10 @@ def __init__(self,
)

self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
config.text_config,
cache_config,
quant_config,
prefix="language_model")

self.make_empty_intermediate_tensors = (
self.language_model.make_empty_intermediate_tensors)
Expand Down
58 changes: 39 additions & 19 deletions vllm/model_executor/models/gemma.py
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,8 @@

from .interfaces import SupportsLoRA, SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers)
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)

logger = init_logger(__name__)

Expand Down Expand Up @@ -83,16 +84,23 @@ def __init__(
hidden_act: Optional[str] = None,
hidden_activation: Optional[str] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config)
self.down_proj = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.down_proj = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.down_proj",
)
self.act_fn = _get_gemma_act_fn(hidden_act, hidden_activation)

def forward(self, x):
Expand All @@ -104,15 +112,18 @@ def forward(self, x):

class GemmaAttention(nn.Module):

def __init__(self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int = 8192,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None) -> None:
def __init__(
self,
hidden_size: int,
num_heads: int,
num_kv_heads: int,
head_dim: int,
max_position_embeddings: int = 8192,
rope_theta: float = 10000,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
tp_size = get_tensor_model_parallel_world_size()
Expand Down Expand Up @@ -142,12 +153,14 @@ def __init__(self,
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.qkv_proj",
)
self.o_proj = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.o_proj",
)

self.rotary_emb = get_rope(
Expand Down Expand Up @@ -186,6 +199,7 @@ def __init__(
config: GemmaConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand All @@ -198,13 +212,15 @@ def __init__(
rope_theta=config.rope_theta,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.self_attn",
)
self.mlp = GemmaMLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
hidden_activation=getattr(config, "hidden_activation", None),
quant_config=quant_config,
prefix=f"{prefix}.mlp",
)
self.input_layernorm = GemmaRMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -259,8 +275,8 @@ def __init__(
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: GemmaDecoderLayer(config, cache_config, quant_config
),
lambda prefix: GemmaDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.norm = GemmaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

Expand Down Expand Up @@ -366,6 +382,7 @@ def __init__(
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
lora_config: Optional[LoRAConfig] = None,
prefix: str = "",
) -> None:
super().__init__()

Expand All @@ -375,7 +392,10 @@ def __init__(
self.lora_config = lora_config

self.quant_config = quant_config
self.model = GemmaModel(config, cache_config, quant_config)
self.model = GemmaModel(config,
cache_config,
quant_config,
prefix=maybe_prefix(prefix, "model"))
self.logits_processor = LogitsProcessor(config.vocab_size)
self.sampler = Sampler()
self.make_empty_intermediate_tensors = (
Expand Down
56 changes: 39 additions & 17 deletions vllm/model_executor/models/internlm2.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,8 @@

from .interfaces import SupportsPP
from .utils import (is_pp_missing_parameter,
make_empty_intermediate_tensors_factory, make_layers)
make_empty_intermediate_tensors_factory, make_layers,
maybe_prefix)


class InternLM2MLP(nn.Module):
Expand All @@ -41,16 +42,23 @@ def __init__(
intermediate_size: int,
hidden_act: str,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.gate_up_proj = MergedColumnParallelLinear(
hidden_size, [intermediate_size] * 2,
hidden_size,
[intermediate_size] * 2,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.gate_up_proj",
)
self.w2 = RowParallelLinear(
intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
self.w2 = RowParallelLinear(intermediate_size,
hidden_size,
bias=False,
quant_config=quant_config)
quant_config=quant_config,
prefix=f"{prefix}.w2",
)
if hidden_act != "silu":
raise ValueError(f"Unsupported activation: {hidden_act}. "
"Only silu is supported for now.")
Expand All @@ -75,6 +83,7 @@ def __init__(
max_position_embeddings: int = 8192,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = hidden_size
Expand Down Expand Up @@ -108,12 +117,14 @@ def __init__(
self.total_num_kv_heads,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wqkv",
)
self.wo = RowParallelLinear(
self.total_num_heads * self.head_dim,
hidden_size,
bias=False,
quant_config=quant_config,
prefix=f"{prefix}.wo",
)

self.rotary_emb = get_rope(
Expand All @@ -123,12 +134,15 @@ def __init__(
base=rope_theta,
rope_scaling=rope_scaling,
)
self.attn = Attention(self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config)
self.attn = Attention(
self.num_heads,
self.head_dim,
self.scaling,
num_kv_heads=self.num_kv_heads,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attn",
)

def split_qkv(self, qkv: torch.Tensor):
seq_len = qkv.shape[0]
Expand Down Expand Up @@ -176,6 +190,7 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand All @@ -192,12 +207,14 @@ def __init__(
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
self.feed_forward = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -251,8 +268,8 @@ def __init__(
)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: InternLMDecoderLayer(config, cache_config,
quant_config),
lambda prefix: InternLMDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.make_empty_intermediate_tensors = (
Expand Down Expand Up @@ -306,14 +323,19 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.config = config
self.quant_config = quant_config
self.model = InternLM2Model(config, cache_config, quant_config)
self.model = InternLM2Model(config,
cache_config,
quant_config,
prefix=maybe_prefix(prefix, "model"))
self.output = ParallelLMHead(config.vocab_size,
config.hidden_size,
quant_config=quant_config)
quant_config=quant_config,
prefix=maybe_prefix(prefix, "output"))
if self.config.tie_word_embeddings:
self.output.weight = self.model.tok_embeddings.weight
self.logits_processor = LogitsProcessor(config.vocab_size)
Expand Down
16 changes: 12 additions & 4 deletions vllm/model_executor/models/internlm2_ve.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
InternLM2MLP, InternLM2Model)
from vllm.sequence import IntermediateTensors

from .utils import make_layers
from .utils import make_layers, maybe_prefix


class InternLM2VEDecoderLayer(nn.Module):
Expand All @@ -25,6 +25,7 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__()
self.hidden_size = config.hidden_size
Expand All @@ -41,18 +42,21 @@ def __init__(
max_position_embeddings=max_position_embeddings,
cache_config=cache_config,
quant_config=quant_config,
prefix=f"{prefix}.attention",
)
self.feed_forward = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward",
)
self.feed_forward_ve = InternLM2MLP(
hidden_size=self.hidden_size,
intermediate_size=config.intermediate_size,
hidden_act=config.hidden_act,
quant_config=quant_config,
prefix=f"{prefix}.feed_forward_ve",
)
self.attention_norm = RMSNorm(config.hidden_size,
eps=config.rms_norm_eps)
Expand Down Expand Up @@ -111,8 +115,8 @@ def __init__(
super().__init__(config, cache_config, quant_config)
self.start_layer, self.end_layer, self.layers = make_layers(
config.num_hidden_layers,
lambda prefix: InternLM2VEDecoderLayer(config, cache_config,
quant_config),
lambda prefix: InternLM2VEDecoderLayer(
config, cache_config, quant_config, prefix=prefix),
prefix=f"{prefix}.layers")

def forward(
Expand Down Expand Up @@ -161,6 +165,10 @@ def __init__(
config: PretrainedConfig,
cache_config: Optional[CacheConfig] = None,
quant_config: Optional[QuantizationConfig] = None,
prefix: str = "",
) -> None:
super().__init__(config, cache_config, quant_config)
self.model = InternLM2VEModel(config, cache_config, quant_config)
self.model = InternLM2VEModel(config,
cache_config,
quant_config,
prefix=maybe_prefix(prefix, "model"))
5 changes: 4 additions & 1 deletion vllm/model_executor/models/internvl.py
Original file line number Diff line number Diff line change
Expand Up @@ -439,7 +439,10 @@ def __init__(self,
)

self.language_model = init_vllm_registered_model(
config.text_config, cache_config, quant_config)
config.text_config,
cache_config,
quant_config,
prefix="language_model")

self.mlp1 = self._init_mlp1(config)

Expand Down
Loading

0 comments on commit bc73e98

Please sign in to comment.