Skip to content

Commit

Permalink
pull request
Browse files Browse the repository at this point in the history
  • Loading branch information
Abbas Harris authored and Abbas Harris committed Dec 2, 2020
1 parent 69ca366 commit 755451e
Show file tree
Hide file tree
Showing 5 changed files with 2,348 additions and 8 deletions.
146 changes: 146 additions & 0 deletions notebooks/.ipynb_checkpoints/abbash_notebook-checkpoint.ipynb

Large diffs are not rendered by default.

175 changes: 175 additions & 0 deletions notebooks/.ipynb_checkpoints/practice_notebook-checkpoint.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# This is the Practice Notebook for Fall 2020\n",
"\n",
"Use this notebook to play around with Jupyter notebooks and the interface."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"plt.rcParams.update({'font.size': 18})\n",
"plt.rcParams['lines.linewidth'] = 3\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Let's manually create an array from 0-8, then square each value. \n",
"\n",
"_Can you do it with a NumPy command?_"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"x=np.array([0, 1, 2, 3, 4, 5, 6, 7, 8])\n",
"y=x**2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## We can plot the result to see the parabola using `matplotlib.pyplot`, which we shortened above to `plt`."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Text(0, 0.5, 'y')"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEWCAYAAACnlKo3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xUZdr/8c+VkASS0BJ6Sei9SiDoqmtbdcW2Kq40G2Vd2+q6+rjq2tvan1XZn4C6gNjLLvbyrLiuSgkIKFKkht5CS0L6/ftjJkMCEyBhkjOTfN+vV16Hc58zmcsx8M1p92XOOURERKoiyusCREQkcilERESkyhQiIiJSZQoRERGpMoWIiIhUWT2vC6hJzZo1cx06dPC6DBGRiDJ//vwdzrnmwbbVqRDp0KEDGRkZXpchIhJRzGxdRdt0OktERKpMISIiIlWmEBERkSpTiIiISJUpREREpMoUIiIiUmUKERGRWqyouIQ73vuBn7fuq5bvrxAREanFHv14Ga/OyeQ3E7/li5+2hvz7K0RERGqptzLWM+W/awDIzi9i0YbdIX8PhYiISC00f90u7nzvx8D6mb1acvMZ3UL+PgoREZFaZtPu/fxu+nwKiksA6NGqIU//dgBRURby91KIiIjUIvsLipkwPYMd2fkANI2PYfLlaSTEVc9UiQoREZFawjnHrW8v4seNewGoF2VMHDWI9knx1faeChERkVpi4qxVfLB4c2D93vN7c3zn5Gp9T4WIiEgt8NmSLTz+6fLA+uihKYwemlrt7+t5iJhZkpk9YWYrzSzPzLab2ZdmdtJB+3U3s3+a2S4zyzGzr83sNK/qFhEJF8u27OXmNxYG1od2SuKe83rXyHt72pTKzFKBWUAi8CKwAmgM9APaltmvM/AtUAQ8BuwBxgOfmtmvnXNf1GzlIiLhISungPHTMsgpKAagfVIDJo4aREx0zRwjeN3Z8BV/Df2cc5sPs98jQBNgkHNuIYCZTQOWAM+bWQ/nnKv2akVEwkhhcQnXzpjP+qz9ACTERjPl8sEkJcTWWA2enc4ys5OBE4HHnHObzSzGzA65hcDMEoDzgVmlAQLgnMsGpgDdgME1VLaISNi47/0lzF6dBYAZPP3bAXRv1bBGa/Dymsg5/mWmmb0P7AdyzGyFmY0us18/IA74Lsj3mO1fKkREpE6ZPnsdr8zODKz/6czunNm7VY3X4WWIdPcvJwNJwBXAWKAAmG5mV/m3t/EvNwb5HqVjbYNsExGplb5btZP7Zi4JrJ/brzXXntLZk1q8vCZSesy1DzjVOVcAYGbvAauBh81sKlB6iis/yPfI8y8rfJLGzCYAEwBSUlJCULaIiHfWZ+Vy7Yz5FJX4LgP3aduIxy/pj1nopzQ5Gl4eiez3L18rDRAA59wuYCbQCt/RSq5/U1yQ71Hfv8wNsq30+01yzqU559KaN29+7FWLiHgkO7+IcVMz2JVbCECzxDgmjUmjQWy0ZzV5GSIb/MstQbaV3qnVFNjk/3OwU1alY8FOdYmI1BolJY6b31jIcn9zqdjoKF4YM4g2TRp4WpeXITLXv2wXZFvp2DbgB3ynso4Pst9Q/zIjtKWJiISXp79Ywedlmko9fFFfBqU29bAiHy9D5J/4roeMNrPE0kEzaw1cCPzsnFvpv5X3feAUM+tfZr9EYBzwMwcCSUSk1nl/0Sae/ffKwPq4EztyyaBgv3/XPM8urDvndpnZn4AXgNlm9hIQC/zev7y+zO5/Bk4HPjOzp4G9+J5YbwsM04OGIlJb/bhxD7e+vSiwfnK35tz+6x4eVlSep0+sO+cmmdkO4DbgAaAE3/MgI51z35TZb6WZ/QJ4FLgdX8gsAM7WlCciUltt25fH+GkZ5BX6mkt1apbAsyMGUq+GpjQ5Gl5Pe4Jz7l3g3aPYbylwQfVXJCLivfyiYq6ZPp/Ne3xPMjSsX4/JV6TRuEGMx5WVFz5xJiIigK+51J3v/ciCzN0ARBk8N/I4OjdPPMIra55CREQkzLz0zVrenr8hsH7HOT35ZbfwfM5NISIiEkb+s2I7D334U2D94uPaMfbEjh5WdHgKERGRMLF6ezbXv7oA/4wmDExpwkO/6ePZlCZHQyEiIhIG9uwvZNy0DPbmFQHQunF9XhgziPox3k1pcjQUIiIiHisucdz42ves3p4DQFy9KCaNSaNFw/pHeKX3FCIiIh776yfL+GrF9sD648P707ddYw8rOnoKERERD709fwOT/rM6sH7dqZ05v3+bw7wivChEREQ8siBzF3e8+0Ng/YyeLbnlV90P84rwoxAREfHA5j37+d30+RQU+6Y06dYykWcuG0BUVPjeiRWMQkREpIblFRYzYdp8tu/zNWxtEh/DlMsHkxjn+UxUlaYQERGpQc45bnt7MT9s3ANAdJQxcdRxpCRX2OU7rClERERq0MRZq5i5aFNg/d7zenFC52YeVnRsFCIiIjXk85+28sRnywPro9JTGHN8B+8KCgGFiIhIDVixdR83vf49pS300jsmcc95vb0tKgQUIiIi1WxXTgHjpmaQU1AMQLumDZg46jhi60X+P8GR/18gIhLGCotLuHbGAjKzcgGIj41m8uVpJCfGeVxZaChERESq0QMf/MR3q3cG1p+6dAA9WzfysKLQUoiIiFSTGXPWMe27dYH1W37VjbP7tPKwotBTiIiIVIM5q3dyz7+WBNaH9W3N9ad18bCi6qEQEREJsfVZufx+xgKK/N2lerdpxOPD+4V1c6mqUoiIiIRQTn4R46dlkJVTAECzxFgmXZ5GfGzkTWlyNBQiIiIhUlLi+OObC1m2ZR8AMdHGC2MG0bZJA48rqz4KERGREHnm/37m0yVbA+sPXdiXQalJHlZU/RQiIiIhMHPRJv72fz8H1q/+RUcuHdzew4pqhkJEROQYfblsG7e8uTCwflLXZtxxTg8PK6o5ChERkWPw3aqdXPPKfAqLfXdidW6ewHMjjqNedN3457Vu/FeKiFSD7zN3MW7qPPKLfN0J2zVtwCvj0mkcH+NxZTVHISIiUgVLN+/lypfnBSZVbNEwjhnj0mnduPbeiRWMQkREpJJWb89mzItz2LO/EICm8THMGJdOanKCx5XVPIWIiEglbNiVy+gpc9iR7XuYsGFcPaaPTadry4YeV+YNhYiIyFHatjeP0VPmsGlPHgANYqJ5+arB9Gnb2OPKvKMQERE5CrtyChjz4lzW7vT1BYmNjmLS5YNI61C7HyY8EoWIiMgR7Msr5IqX57J8q286k+go47mRAzmpa3OPK/OeQkRE5DD2FxQz9h8ZLN6wBwAzeHJ4f87sXbv6glSVQkREpAL5RcX87pX5zF2bFRh76MK+XDiwrYdVhReFiIhIEEXFJfzhtYX8Z8X2wNid5/RkZHqKh1WFH4WIiMhBSkoct72zmE+WbAmM3Xh6V8af3MnDqsKTQkREpAznHPfMXMK7CzYGxsae2JGbz+jqYVXhSyEiIlLGY58uZ/rsdYH1ywa3565hPWtla9tQUIiIiPg9/+VK/j5rVWD9/P5teOg3fRUgh6EQEREBXv5mDY9/ujywfkbPFjx5aX+ioxQgh6MQEZE6782M9dz3/k+B9V90Sea5kccRU0d6ghwLfUIiUqd9uHgzt7+zOLA+KLUpk8akUT8m2sOqIodCRETqrC+XbeMPr39Pia8pIb1aN+KlKweTEFfP28IiiEJEROqk0ra2RSUH2tpOHzuExg3qTlfCUFCIiEidc3Bb2/ZJDZgxbijJiXEeVxZ5FCIiUqcc3Na2ZaM4ZowdSqvG9T2uLDKFVYiYWbyZrTEzZ2bPBdne3cz+aWa7zCzHzL42s9O8qFVEIs+qg9raJiXE8srYdFKS4z2uLHKFVYgA9wPNgm0ws87At8DxwGPArUAi8KmZnVFjFYpIRArW1nba1UPqbFvbUAmbEDGz44CbgHsq2OURoAlwlnPuEefcROAkYBPwvOmRUhGpwLa9eYyaMofNZdra/uPqut3WNlTCIkTMLBqYDHwCvBtkewJwPjDLObewdNw5lw1MAboBg2umWhGJJLtyChj94hzWlWlrO/nyNAal1u22tqESFiEC3Az0AK6vYHs/IA74Lsi22f6lQkREyilta7tiazZwoK3tiV2DnjWXKvA8RMysI3AfcL9zbm0Fu7XxLzcG2VY6FrTVmJlNMLMMM8vYvn17sF1EpBYK1tb2qUvV1jbUPA8R4O/AGuCpw+xTeutEfpBteQftU45zbpJzLs05l9a8efOqVykiEaOitrYXDFBb21Dz9Nl+MxsNnAmc7JwrPMyuuf5lsCeB6h+0j4jUYUXFJdz42vfl2treNUxtbauLZyFiZnH4jj4+AraYWRf/ptJfFRr7x3bguwOr7LaySseCneoSkTqkpMRx29uL+XTJ1sDYH07vyriT1Na2unh5OqsB0BwYBvxc5muWf/to//o44Ad8p7KOD/J9hvqXGdVYq4iEOeccd8/8kXe/P/D75LgTO3KT2tpWKy9PZ+UAw4OMNwcm4rvd90VgsXMu28zeBy4ys/7OuUUAZpaIL2R+BubWTNkiEm6cczz6yTJemZ0ZGBsxpD13qq1ttfMsRPzXQN4+eNzMOvj/uMo5V3b7n4HTgc/M7GlgLzAe3+msYc45V60Fi0jYev7Llbzw1erA+gUD2vDghWprWxMiZtJ859xKM/sF8ChwOxALLADOds594WlxIuKZl79ZwxOfrQisn9GzJU8MV1vbmhJ2IeJ/ViTo/33n3FLgghotSETC1pvzgrW1Hai2tjVIn7SIRKQPFm/i9nfLt7WdfLna2tY0hYiIRJx/L9vKTa8vDLS17d3G19Y2PjbsTq7UegoREYko36zcwTWvLAi0te3SIpFpV6utrVcUIiISMd5ftImrXp5HQZm2tq+MTVdbWw/p2E9EIsKUr1fz4IdLA+utGtVXW9swoBARkbBWUuJ4+KOlTPnvmsBYlxaJTL16CG2bNPCwMgGFiIiEsfyiYm59azEzF20KjKWlNmXKFWk0iY/1sDIppRARkbC0N6+Qa6bP59tVOwNjZ/Vuyf9eNlC38YYRhYiIhJ2te/O44qW5LNuyLzA2Zmgq957fW0+ihxmFiIiElZXbsrnipbls3L0/MHbrWd259pTOmgsrDClERCRszF+XxdipGezO9fWoi44yHr2oL8PT2ntcmVREISIiYeHTJVu48bXvyfc/AxIfG83EUcdxSvcWHlcmh6MQERHPvTJ7HXf/68fANCbJCbG8dOVg+rdv4m1hckSVChEzW4GvUdRU59yW6ilJROoK5xxPfb6CZ/+9MjCWmhzPtKuHkJqc4GFlcrQqO+1JIfAIkGlm/zSzc81MU6eISKUVFpdw29uLywVIv3aNeef3JyhAIkilAsA51xs4AZgKnAr8C1hvZg+ZWedqqE9EaqHcgiLGT8vgrfkbAmOndG/Oa+OH0kzzYEWUSh9FOOdmO+fGA63x9Tdfg6917Qoz+7eZjTQz/RSISFA7svMZMWk2s5ZvD4wNH9SOyZenkRCny7SRpsqnopxzuc65l51zJwI9gNeBU4DpwCYze9rMUkJTpojUBut25nDJ379l0YY9gbHrT+3CY5f0UzfCCHVMsW9m0cD5wFjgbMABXwL5wA3ABDMb6Zz717EWKiKRbfGG3Vz18jx25hQAEGVw3wV9GDM01ePK5FhUKUTMrAe+4BgDtAC2AU8Ak51zq/z7dAHeBB7Dd+1EROqoWcu3ce2MBeQWFAMQVy+Kv40YyFm9W3lcmRyryt7iezW+8BjqH/oCmAT8yzlXVHZf59xKM/sbMCUUhYpIZHp7/gZuf2dxoBNh4wYxvHhFGmkdkjyuTEKhskciU4AtwKP4jjrWHmH/n/BdIxGROsY5x8RZq3j80+WBsbZNGjD16sF0adHQw8oklCobIhcDM51zxUezs3NuLjC30lWJSEQrLnHcO3MJ02evC4z1aNWQqVcPoWUjdSKsTSoVIs6596qrEBGpHfIKi/nD69/z6ZKtgbHjOyXzwuWDaFQ/xsPKpDropmwRCZnduQWMm5pBxrpdgbHz+rfhieH9iKunRlK1kUJEREJi4+79XPHSXFZuyw6MjTuxI3ec05MoNZKqtRQiInLMlm7ey5Uvz2Xr3vzA2F3DejLupE4eViU1QSEiIsfk21U7+N20+ezL993lHxNtPHnpAM7v38bjyqQmKEREpMreX7SJW95cREGxr5FUYlw9Jo0ZxAldmnlcmdQUhYiIVMmL/13DAx/8FFhv0TCOf1w1hF5tGnlYldQ0hYiIVEpJieORj5cy+es1gbHOzROYevUQ2jWN97Ay8YJCRESOWkFRCX96axEzF20KjA1KbcqUy9NomhDrYWXiFYWIiByVfXmFXPPKfL5ZuTMw9qteLXl2xEDqx+gZkLpKISIiR7R1bx5XvjyPpZv3BsZGpadw/wV9iNYzIHWaQkREDmvltmyueGkuG3fvD4z96cxuXHdqF8wUIHWdQkREKjR/XRZjp2awO7cQgOgo45GL+nJpWnuPK5NwoRARkaA+WOx7BiS/yPcMSIOYaCaOPo5Tu7fwuDIJJwoRESlnf0Ex93/wE6/NzQyMJSfE8tKVg+nfvomHlUk4UoiISMDyLfu44bUFrNh6YBLF1OR4pl41hA7NEjysTMKVQkREcM4xY04mD3zwU+D0FcCwvq15+KK+NG6gPiASnEJEpI7bk1vI7e8u5uMftwTG6sdEcc95vblscHvdgSWHpRARqcMy1mbxh9cXlrt9t3vLhjw3ciBdW6oPuhyZQkSkDioucfx91kqe/uJniktcYHz00BTuGtZLT6DLUVOIiNQxW/fmcdPrC/lu9YHpSxrVr8djl/Tj7D6tPaxMIpFCRKQO+feyrfzprcVk5RQExtJSm/K/IwbStkkDDyuTSKUQEakD8ouK+evHy3npmwPTt5vBDad24cbTu1IvOsrD6iSSKUREarnV27O58fXv+XHjgckTWzaK45nfDuT4zskeVia1gUJEpBZ7Z/4G/vKvH8ktKA6Mnd6jBY8P70+S+n9ICHh6DGtm3czsfjObbWbbzWyfmS00szvN7JDHY82su5n908x2mVmOmX1tZqd5UbtIOMvOL+LmNxZyy1uLAgESGx3FPef1YsoVaQoQCRmvj0SuBq4DZgIzgELgVOBB4FIzG+qc2w9gZp2Bb4Ei4DFgDzAe+NTMfu2c+8KD+kXCzg8b9nDDawtYuzM3MNapWQJ/GzGQPm0be1iZ1EZeh8jbwCPOuT1lxv6fmf0M3AmMBZ7zjz8CNAEGOecWApjZNGAJ8LyZ9XDOOUTqqJISx0vfrOGvnyyjsPjAX4VLBrXjvvN7kxDn9V93qY08PZ3lnMs4KEBKveFf9gHwn9o6H5hVGiD+12cDU4BuwOBqLlckbO3Mzmfs1Hk8+OHSQIAkxtXjmd8O4Inh/RUgUm3C9SernX+51b/sB8QB3wXZd7Z/ORiYW811iYSdb1fu4KY3FrJtX35grF+7xjw7YiCpyZp5V6pX2IWImUUDd+O79vGqf7iNf7kxyEtKx9pW8P0mABMAUlJSQleoiMcKi0t45osVTJy1irIncsef1JFbz+pBbD09+yHVL+xCBHgGGArc4Zxb7h+L9y/zg+yfd9A+5TjnJgGTANLS0nTNRGqF9Vm5/OH171mQuTswlpwQyxOX9lfnQalRYRUiZvYAcD0wyTn3SJlNpbeZxAV5Wf2D9hGp1T76YTP/885i9uUVBcZO7NKMpy7tT4tG9Q/zSpHQC5sQMbN7gbuAl4FrDtq8yb8MdsqqdCzYqS6RWiNY29roKOOWM7txzcmdiYpS3w+peWERImZ2D3APMA0YF+RW3R/wnco6PsjLh/qXGdVXoYi3grWtbde0AX8bMZDjUpp6WJnUdZ6HiJndDdwLTAeucs6VHLyPcy7bzN4HLjKz/s65Rf7XJgLjgJ/RnVlSCznneHVuJve/f1Db2n6tefg3alsr3vM0RMzsOuA+IBP4Ahh5UCvOrc65z/1//jNwOvCZmT0N7MX3xHpbYJgeNJTapqK2tfee15vfqm2thAmvj0RKHxBMAaYG2f4V8DmAc26lmf0CeBS4HYgFFgBna8oTqW2Cta3t0aohz45Q21oJL56GiHPuSuDKSuy/FLiguuoR8VpFbWvHDE3lzmE91bZWwo7XRyIi4ldx29r+nN2nlYeViVRMISISBoK1rR3coSnPXKa2tRLeFCIiHtq+L58nPl3OGxnrA2NmcMNpXbnxtC5qWythTyEi4oG8wmJe+mYNE79cRXb+gSfP1bZWIo1CRKQGOef46IctPPLxUjbs2l9u25m9WvLoxf3UdVAiikJEpIb8sGEP93+whHlrd5Ub79oikbvO7cUvuzX3qDKRqlOIiFSzrXvzeOyT5byzYEO58abxMfzxzO6MGNxe1z4kYilERKrJ/oJiJn+9mr/PWsX+wuLAeEy0ccXxHbjh9K6atkQinkJEJMRKShwzF23ir58sY/OevHLbzuzVkj+f05OOzdRxUGoHhYhICC3I3MX97//EwvW7y433aNWQu8/txQldmnlUmUj1UIiIhMDG3fv568fLmLloU7nxZomx/OnM7gxPa0+0+n1ILaQQETkGOflF/L+vVjHpP6vLTdUeGx3F2JM6cu0pnWlYX9c9pPZSiIhUQUmJ450FG3j80+Vs25dfbtuwvq25/dc9aJ8U71F1IjVHISJSSXNW7+SBD3/ix417y433bduYv5zbiyEdkzyqTKTmKUREjlLmzlwe+XhpuSZR4Juq5NazenDRwLbqcy51jkJE5Aj25RXy3Jcrefm/aykoPnDdI65eFL/7ZWeu+WUn4mP1V0nqJv3ki1SguMTxxrz1PPnZcnaWmaId4MIBbbjt7B600TTtUscpRESC+GblDh744CeWbdlXbnxgShPuPrcXA1OaelSZSHhRiIiUsXp7Ng9/tJQvlm4rN96mcX3+59c9OL9/G8x03UOklEJEBNiTW8j//t/PTPtuLUVlepvHx0bz+192ZtxJnWgQq/7mIgdTiEidVlhcwqtzMnn6ixXszi0st+2SQe249azutGxU36PqRMKfQkTqrC+Xb+OhD5eyclt2ufEhHZL4y7m96NuusUeViUQOhYjUOSu27uPBD5fynxXby423T2rAHb/uydl9Wum6h8hRUohInbFtbx7PfbmSGXMyKS5z3SMxrh7Xn9aFK0/oQP0YXfcQqQyFiNRqJSWOb1ft5NW56/hsydZyF82jDH47OIU//qobzRvGeVilSORSiEitlJVTwNvz1/PqnEzW7sw9ZPsJnZO5a1gverVp5EF1IrWHQkRqDeccGet2MWP2Oj76YUu5KUpKDemQxPiTO3FGzxa67iESAgoRiXh78wp5b8FGZsxZx4qt2Ydsb1i/Hhcf145R6Sl0bdnQgwpFai+FiESsxRt2M2N2JjMXbWJ/YfEh2/u3b8Ko9BTO69dGDwqKVBOFiESUnPwiZi7axIw56w7p5wG+J8wvGNCWUekp9Gmr5zxEqptCRCLCsi17mTE7k/e+30h2ftEh23u0asiooalcOKCN2tGK1CCFiIStvMJiPvphMzPmZDJ/3a5DtsfVi2JYv9aMSk/luJQmulAu4gGFiISdVduzeW1OJm8v2HDIfFYAnZonMCo9lYuPa0uT+FgPKhSRUgoRCQsFRSV89tMWZszO5LvVOw/ZHhNtnNW7FaPSUxnaKUlHHSJhQiEinlqflctrczN5M2M9O7ILDtnermkDRqanMHxQez1VLhKGFCJS44qKS/hy+XZmzFnHVyu241z57VEGp/dsyaj0FE7u2pyoKB11iIQrhYjUmC178nhj3npen5fJ5j15h2xv2SiOywancNmQ9rRurN7lIpFAISLVqqTE8d+VO5gxZx1fLN1WbvbcUid3a86o9BRO79GCetFRHlQpIlWlEJFqsSM7n7cyNvDa3Ewysw6dADE5IZbhae0ZOSSFlOR4DyoUkVBQiEhI7C8o5vv1u5i7Jos5q7PIWJdFYfGhRx1DOyUxMj2Vs3q3JK6epiIRiXQKEamS7PwiMtZmMXeN72vRht1BQwOgUf16XDKoPSPT29OlhSZAFKlNFCJyVHbnFjBv7S7mrtnJnDVZ/LhxD0Eub5QzoH0TRg9N5dx+rdUxUKSWUohIUNv35TNvbRZzVvtCY/nWfYfcinuwLi0SGdIxifSOSQzpmKQ7rETqAIWIALBp937f9Yw1WcxZs5PV23MOu78Z9GjViHR/aAzumESzRD0MKFLXKETqIOccmVm5zFntC425a3eyPmv/YV8THWX0ads4EBppqUk0jtdsuSJ1nUKkDnDOsXJbtv8oI4u5a3aydW/+YV8TGx1F//aNSe+YzJCOSQxKbUpCnH5cRKQ8/atQCxWXOJZt2cuc1f67p9ZmkZVz6LxUZdWPiWJQalOGdEgmvVMSA9o30cVwETkihUgtUFhcwo8b9wRut527Not9eYc2biqrYVw90jo0ZYj/SKNv28bE1tPT4iJSOREVImYWBfwB+B3QAdgOvAnc7Zw7/JXgCJVXWExWTgFZOQXszCkgKyefrJxC/7KA9Vn7WZC5i9yCQ3uMl9U0PobBHZJI75RMesckerZuRLQmNhSRYxRRIQI8DdwIvAc8CfT0rw80szOccyVeFnckzjn25ReRlV0aCAXsKhMOO/3rBwKj4IjhUJHmDeMCF8HTOyXTpXmiZsMVkZCLmBAxs97ADcC7zrmLy4yvAf4GXAa8WpM1FZc4duUWBI4UAv/4Z/uPGHJ9Rww7s/2BkVtQ4VPdx6ptkwakdyp9RiOZDsnxatwkItUuYkIEGAEY8MxB45OBR4HRVEOI7MjO5x/frC1zKqkgcMSwe3/hER/AO1Yx0UbT+FiSEmJJToylaXwsyQmxJCXEkZQYS7OEWPq2a0y7pprEUERqXiSFyGCgBJhbdtA5l2dmC/3bQ25/QTHPfbkyZN8vPjbaFwgJsTRNiA38OSkhjqSEGP/SP5YYS8O4ejqiEJGwFUkh0gbY4ZwL9oDDRuAEM4t1zpW7l9XMJgATAFJSUir9psmJsYfd3iQ+5kAoxPuOFpIOCoXkhNKxWN02KyK1SiSFSDxQ0RNyeWX2KRcizqPGZFgAAAdrSURBVLlJwCSAtLS0Sp98ahATzS2/6uYPi7hyp5WaxseoiZKI1GmRFCK5QIsKttUvs09ImRk3nN411N9WRKRWiKRfozcBzcws2Cx/bfGd6jr8Y9kiIhJSkRQi8/DVO6TsoJnVBwYAGV4UJSJSl0VSiLwBOOCmg8bH47sWMqPGKxIRqeMi5pqIc+4HM3seuN7M3gU+4sAT619Rww8aiohIBIWI303AWny37A4DdgDP4ps7K6ynPBERqY0iKkScc8X45sx60utaREQksq6JiIhImDFX3ZM/hREz2w6sq+LLm+E7fSZHT59Z5ejzqhx9XpVzLJ9XqnOuebANdSpEjoWZZTjn0ryuI5LoM6scfV6Vo8+rcqrr89LpLBERqTKFiIiIVJlC5OhN8rqACKTPrHL0eVWOPq/KqZbPS9dERESkynQkIiIiVaYQERGRKlOIiIhIlSlEDsPMoszsZjNbZmZ5ZrbezJ40swSvaws3ZtbNzO43s9lmtt3M9pnZQjO7U5/X0TGzeDNbY2bOzJ7zup5wZGZJZvaEma30/53cbmZfmtlJXtcWbsws0czuMLMf/H8fd5jZt2Z2pZlZqN4noubO8sDT+GYJfg/ffF2lswYPNLMzNOljOVcD1wEz8U3LXwicCjwIXGpmQ51z+z2sLxLcj++pYgnCzFKBWUAi8CKwAmgM9MPXmE78zCwK+Bg4AZiKb6LaeGAE8DK+f8v+JyRv5pzTV5AvoDdQArxz0PgN+PqajPS6xnD6AtKAxkHGH/R/Xtd7XWM4fwHHAUXAH/2f13Ne1xRuX8DXwHqgtde1hPsXcLz/5+jpg8ZjgdXA7lC9l05nVWwEYMAzB41PxtfLfXSNVxTGnHMZzrk9QTa94V/2qcl6IomZReP7ufoEeNfjcsKSmZ0MnAg85pzbbGYxZhbvdV1hrJF/uansoPO1EN8B5ITqjRQiFRuM70hkbtlB51wesNC/XY6snX+51dMqwtvNQA/geq8LCWPn+JeZZvY+sB/IMbMVZqZf6A41F9gN3GZmw80sxcy6m9kjwCDg3lC9kUKkYm2AHc65/CDbNgLNzCy2hmuKKP7fsO/Gd5pGnSeDMLOOwH3A/c65tR6XE866+5eTgSTgCmAsUABMN7OrvCosHDnndgHnA1nAm/hmL1+G77rlxc65yaF6L11Yr1g8ECxAAPLK7FNQM+VEpGeAocAdzrnlXhcTpv4OrAGe8rqQMNfQv9wHnOo/LYOZvYfvHP/DZjbV6WaXsrKBH/Hd7PItvvC9DnjVzC5wzn0eijfRkUjFcoG4CrbVL7OPBGFmD+A7PTPJOfeI1/WEI/9pmDOBa5xzhV7XE+ZK7+x7rTRAIPAb90ygFQeOVuo8M+uLLzg+d87d6px7zzn3Ir7rSluAyf4zBcdMIVKxTfhOWQULkrb4TnXpKCQIM7sXuAvfrYTXeFtNePL/XD0FfARsMbMuZtYFSPXv0tg/1sSzIsPLBv9yS5Btm/3LpjVUSyS4Gd8vu2+VHXTO5QIf4vs56xCKN1KIVGwevs9nSNlBM6sPDAAyvCgq3JnZPcA9wDRgnPPfVyiHaAA0B4YBP5f5muXfPtq/Ps6L4sJQ6Q0u7YJsKx3bVkO1RILS52aCHW3UO2h5TBQiFXsD333WNx00Ph7ftZAZNV5RmDOzu/Hd9TEduErnpw8rBxge5Ota//ZP/OszPaku/PwT3/WQ0WaWWDpoZq2BC4GfnXMrvSouDP3kX15ZdtB/ZHsBsAtYFYo30lTwh2Fmz+I7r/8evtMOpU+sfwOcpn8kDzCz64DngEzgL/hujy5ra6gu5NVmZtYB34X2551zuuW3DDObALwALAFewvfg3O+B1sC5zrnPPCwvrPif7l+A7xTfDHz/ZiXh+yW4A3Cdc25iKN5Ld2cd3k3AWmACvtMOO/BNH3C3AuQQpc/NpOCbZuFgXwEKEaky59wkM9sB3AY8gO8Xle/wzR7xjafFhRnn3DozG4LvFvvTgcvw3ZywELjFOReyh1p1JCIiIlWmayIiIlJlChEREakyhYiIiFSZQkRERKpMISIiIlWmEBERkSpTiIiISJUpREREpMoUIiIiUmUKERERqTKFiIiIVJlCRMQDZlbPzL4xs2wz63HQtglm5szsfq/qEzlamoBRxCP+6boXAuuAoc65PDPrja8h2nzgFOdcsZc1ihyJjkREPOKcWweMBfoDT5hZA+B1IA8YpQCRSKAjERGPmdlEfM2VvgVOAC4OZb8HkeqkEBHxmJnVB34EOgOTnXMTPC5J5KjpdJaI9/rh6wgJ0MfM1HFUIoZCRMRDZtYI33WQHcCdwPHAfZ4WJVIJ+o1HxFsvAKnAr5xz/zazAcDtZvaFc+5Lj2sTOSJdExHxiJmNBaYADzvn7vSPNcF3228M0M85t9PDEkWOSCEi4gH/A4bz8QXGL51zRWW2HQ/8B/jYOXe+RyWKHBWFiIiIVJkurIuISJUpREREpMoUIiIiUmUKERERqTKFiIiIVJlCREREqkwhIiIiVaYQERGRKlOIiIhIlf1/4TaCDQOQ6+YAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plt.plot(x, y)\n",
"plt.xlabel('x')\n",
"plt.ylabel('y')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Now, let's build a 2D array and print the result."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 2 3]\n",
" [4 5 6]\n",
" [7 8 9]]\n"
]
}
],
"source": [
"A = np.array([[1, 2, 3], \n",
" [4, 5, 6],\n",
" [7, 8, 9]])\n",
"print(A)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Then, take the transpose and print it again."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[1 4 7]\n",
" [2 5 8]\n",
" [3 6 9]]\n"
]
}
],
"source": [
"print(A.T)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## What's next?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
Loading

0 comments on commit 755451e

Please sign in to comment.