forked from tomasonjo/covidgraph-biobert
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* support new pipeline format * Add docker build+push action
- Loading branch information
Tim
authored and
Tim
committed
Oct 29, 2020
1 parent
57e915d
commit 9fdae81
Showing
3 changed files
with
156 additions
and
111 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
name: Docker Image CI | ||
|
||
on: | ||
create: | ||
tags: | ||
- V* | ||
|
||
jobs: | ||
|
||
build: | ||
|
||
runs-on: ubuntu-latest | ||
|
||
steps: | ||
- uses: actions/checkout@v2 | ||
- name: Build the Docker image | ||
run: docker build . --file dockerfile --tag data-biobert:latest | ||
- name: Publish to Registry | ||
uses: HurricanKai/Publish-Docker-Github-Action@master | ||
with: | ||
name: covidgraph/data-biobert | ||
username: ${{ secrets.DZD_DOCKER_USERNAME }} | ||
password: ${{ secrets.DZD_DOCKER_PASSWORD }} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,130 +1,152 @@ | ||
import os | ||
import sys | ||
from neo4j import GraphDatabase | ||
import py2neo | ||
import json | ||
import requests | ||
import csv | ||
import logging | ||
|
||
|
||
from cypher_queries import * | ||
|
||
neo4j_url = os.getenv('GC_NEO4J_URL', 'bolt://localhost:7687') | ||
neo4j_user = os.getenv('GC_NEO4J_USER', 'neo4j') | ||
neo4j_pw = os.getenv('GC_NEO4J_PASSWORD', 'test') | ||
# logging | ||
log = logging.getLogger(__name__) | ||
log.addHandler(logging.StreamHandler()) | ||
LOG_LEVEL = os.getenv('LOG_LEVEL', "INFO") | ||
log.setLevel(LOG_LEVEL) | ||
|
||
# neo4j connection | ||
neo4j_config_str = os.getenv('NEO4J', '{"host": "localhost"}') | ||
neo4j_config_dict = json.loads(neo4j_config_str) | ||
graph = py2neo.Graph(**neo4j_config_dict) | ||
|
||
ENV = os.getenv('ENV', 'prod') | ||
|
||
|
||
def download_csv(url, filename): | ||
data = requests.get(url) | ||
open(filename, 'wb').write(data.content) | ||
|
||
|
||
if __name__ == "__main__": | ||
# Connect to Neo4j | ||
driver = GraphDatabase.driver(neo4j_url, auth=(neo4j_user, neo4j_pw)) | ||
|
||
graph.run(create_named_entity_constraint) | ||
|
||
# Import named entities | ||
log.info("Download named entities") | ||
PUBMED_ABSTRACT_DOWNLOAD_URL = 'https://drive.google.com/u/0/uc?id=1Rlv70gNtalFp4T4XtpI6psJdJJzZFTTY&export=download' | ||
PUBMED_ABSTRACT_FILE = 'pubmed_abstracts.csv' | ||
|
||
download_csv(PUBMED_ABSTRACT_DOWNLOAD_URL, PUBMED_ABSTRACT_FILE) | ||
|
||
with driver.session() as session: | ||
|
||
try: | ||
session.run(create_named_entity_constraint) | ||
except: | ||
pass | ||
|
||
# Import named entities for abstracts | ||
|
||
abstract_parameters = [] | ||
with open(PUBMED_ABSTRACT_FILE) as csvfile: | ||
reader = csv.DictReader(csvfile) | ||
for index, row in enumerate(reader): | ||
abstract_parameters.append({'pubmed_id': row['pubmed_id'], 'entity_type': row['entity_type'],'entity_value': row['entity_value'], 'entity_id':row['covidgraph_id']}) | ||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
print('importing {} batch abstract entities'.format(index / 1000)) | ||
r = session.run(pubmed_abstract_query, {'parameters': abstract_parameters}) | ||
abstract_parameters = [] | ||
# import the rest | ||
r = session.run(pubmed_abstract_query, {'parameters': abstract_parameters}) | ||
|
||
# Import named entities external ids for genes | ||
|
||
PUBMED_GENE_EXTERNALIDS_DOWNLOAD_URL = 'https://drive.google.com/u/0/uc?id=1KgJPBYB8D4_hN7wbiu0XOOM-lQdV8EgP&export=download' | ||
PUBMED_GENE_EXTERNALIDS_FILE = 'pubmed_gene_external_ids.csv' | ||
|
||
download_csv(PUBMED_GENE_EXTERNALIDS_DOWNLOAD_URL, PUBMED_GENE_EXTERNALIDS_FILE) | ||
external_ids_parameters = [] | ||
with open(PUBMED_GENE_EXTERNALIDS_FILE) as csvfile: | ||
reader = csv.reader(csvfile, delimiter='\t') | ||
for index, row in enumerate(reader): | ||
bern_id = row[3] | ||
external_ids = row[1].split("|") | ||
external_ids_parameters.append({'entity_id': bern_id, 'external_ids': external_ids}) | ||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
print('importing {} batch gene external ids'.format(index / 1000)) | ||
r = session.run(import_external_ids_query, {'parameters': external_ids_parameters}) | ||
external_ids_parameters = [] | ||
# import the rest | ||
r = session.run(import_external_ids_query, {'parameters': external_ids_parameters}) | ||
|
||
|
||
# Import named entities external ids for diseases | ||
|
||
PUBMED_DISEASE_EXTERNALIDS_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1guHxBbUksuDx58zKh8o0d0dgs7klotFT&export=download" | ||
PUBMED_DISEASE_EXTERNALIDS_FILE = "pubmed_disease_external_ids.csv" | ||
|
||
download_csv(PUBMED_DISEASE_EXTERNALIDS_DOWNLOAD_URL, PUBMED_DISEASE_EXTERNALIDS_FILE) | ||
|
||
external_ids_parameters = [] | ||
with open(PUBMED_DISEASE_EXTERNALIDS_FILE) as csvfile: | ||
reader = csv.reader(csvfile, delimiter='\t') | ||
for index, row in enumerate(reader): | ||
bern_id = row[0] | ||
external_ids = row[1].split(", ") | ||
external_ids_parameters.append({'entity_id': bern_id, 'external_ids': external_ids}) | ||
|
||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
print('importing {} batch disease external ids'.format(index / 1000)) | ||
r = session.run(import_external_ids_query, {'parameters': external_ids_parameters}) | ||
external_ids_parameters = [] | ||
# import the rest | ||
r = session.run(import_external_ids_query, {'parameters': external_ids_parameters}) | ||
|
||
# Import named entities external ids for drugs | ||
|
||
PUBMED_DRUG_EXTERNALIDS_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1zq-za_1OMCrrJaVwIj-dwIHogqVQ9n0G&export=download" | ||
PUBMED_DRUG_EXTERNALIDS_FILE = "pubmed_drug_external_ids.csv" | ||
|
||
download_csv(PUBMED_DRUG_EXTERNALIDS_DOWNLOAD_URL, PUBMED_DRUG_EXTERNALIDS_FILE) | ||
|
||
external_ids_parameters = [] | ||
with open(PUBMED_DRUG_EXTERNALIDS_FILE) as csvfile: | ||
reader = csv.reader(csvfile, delimiter='\t') | ||
for index, row in enumerate(reader): | ||
bern_id = row[0] | ||
external_ids = row[1].split(", ") | ||
external_ids_parameters.append({'entity_id': bern_id, 'external_ids': external_ids}) | ||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
print('importing {} batch drug external ids'.format(index / 1000)) | ||
r = session.run(import_external_ids_query, {'parameters': external_ids_parameters}) | ||
external_ids_parameters = [] | ||
# import the rest | ||
r = session.run(import_external_ids_query, {'parameters': external_ids_parameters}) | ||
|
||
# Species tranformation | ||
# | ||
#You can get a NCBI taxonomy ID by removing the last two digits of a BERN species ID. | ||
# | ||
#Example. | ||
#1009505 -> 10095 | ||
# | ||
#Mus sp., mice | ||
#https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10095 | ||
|
||
session.run(species_ncbi_query) | ||
|
||
|
||
|
||
# Import named entities for abstracts | ||
|
||
abstract_parameters = [] | ||
with open(PUBMED_ABSTRACT_FILE) as csvfile: | ||
reader = csv.DictReader(csvfile) | ||
for index, row in enumerate(reader): | ||
abstract_parameters.append({'pubmed_id': row['pubmed_id'], 'entity_type': row['entity_type'], | ||
'entity_value': row['entity_value'], 'entity_id': row['covidgraph_id']}) | ||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
log.info( | ||
'importing {} batch abstract entities'.format(index / 1000)) | ||
r = graph.run(pubmed_abstract_query, { | ||
'parameters': abstract_parameters}) | ||
abstract_parameters = [] | ||
# import the rest | ||
r = graph.run(pubmed_abstract_query, { | ||
'parameters': abstract_parameters}) | ||
|
||
# Import named entities external ids for genes | ||
|
||
PUBMED_GENE_EXTERNALIDS_DOWNLOAD_URL = 'https://drive.google.com/u/0/uc?id=1KgJPBYB8D4_hN7wbiu0XOOM-lQdV8EgP&export=download' | ||
PUBMED_GENE_EXTERNALIDS_FILE = 'pubmed_gene_external_ids.csv' | ||
|
||
download_csv(PUBMED_GENE_EXTERNALIDS_DOWNLOAD_URL, | ||
PUBMED_GENE_EXTERNALIDS_FILE) | ||
external_ids_parameters = [] | ||
with open(PUBMED_GENE_EXTERNALIDS_FILE) as csvfile: | ||
reader = csv.reader(csvfile, delimiter='\t') | ||
for index, row in enumerate(reader): | ||
bern_id = row[3] | ||
external_ids = row[1].split("|") | ||
external_ids_parameters.append( | ||
{'entity_id': bern_id, 'external_ids': external_ids}) | ||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
log.info( | ||
'importing {} batch gene external ids'.format(index / 1000)) | ||
r = graph.run(import_external_ids_query, { | ||
'parameters': external_ids_parameters}) | ||
external_ids_parameters = [] | ||
# import the rest | ||
r = graph.run(import_external_ids_query, { | ||
'parameters': external_ids_parameters}) | ||
|
||
# Import named entities external ids for diseases | ||
|
||
PUBMED_DISEASE_EXTERNALIDS_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1guHxBbUksuDx58zKh8o0d0dgs7klotFT&export=download" | ||
PUBMED_DISEASE_EXTERNALIDS_FILE = "pubmed_disease_external_ids.csv" | ||
|
||
download_csv(PUBMED_DISEASE_EXTERNALIDS_DOWNLOAD_URL, | ||
PUBMED_DISEASE_EXTERNALIDS_FILE) | ||
|
||
external_ids_parameters = [] | ||
with open(PUBMED_DISEASE_EXTERNALIDS_FILE) as csvfile: | ||
reader = csv.reader(csvfile, delimiter='\t') | ||
for index, row in enumerate(reader): | ||
bern_id = row[0] | ||
external_ids = row[1].split(", ") | ||
external_ids_parameters.append( | ||
{'entity_id': bern_id, 'external_ids': external_ids}) | ||
|
||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
log.info('importing {} batch disease external ids'.format( | ||
index / 1000)) | ||
r = graph.run(import_external_ids_query, { | ||
'parameters': external_ids_parameters}) | ||
external_ids_parameters = [] | ||
# import the rest | ||
r = graph.run(import_external_ids_query, { | ||
'parameters': external_ids_parameters}) | ||
|
||
# Import named entities external ids for drugs | ||
|
||
PUBMED_DRUG_EXTERNALIDS_DOWNLOAD_URL = "https://drive.google.com/u/0/uc?id=1zq-za_1OMCrrJaVwIj-dwIHogqVQ9n0G&export=download" | ||
PUBMED_DRUG_EXTERNALIDS_FILE = "pubmed_drug_external_ids.csv" | ||
|
||
download_csv(PUBMED_DRUG_EXTERNALIDS_DOWNLOAD_URL, | ||
PUBMED_DRUG_EXTERNALIDS_FILE) | ||
|
||
external_ids_parameters = [] | ||
with open(PUBMED_DRUG_EXTERNALIDS_FILE) as csvfile: | ||
reader = csv.reader(csvfile, delimiter='\t') | ||
for index, row in enumerate(reader): | ||
bern_id = row[0] | ||
external_ids = row[1].split(", ") | ||
external_ids_parameters.append( | ||
{'entity_id': bern_id, 'external_ids': external_ids}) | ||
# Batch by 1000 rows | ||
if (index != 0) and (index % 1000 == 0): | ||
log.info( | ||
'importing {} batch drug external ids'.format(index / 1000)) | ||
r = graph.run(import_external_ids_query, { | ||
'parameters': external_ids_parameters}) | ||
external_ids_parameters = [] | ||
# import the rest | ||
r = graph.run(import_external_ids_query, { | ||
'parameters': external_ids_parameters}) | ||
|
||
# Species tranformation | ||
# | ||
# You can get a NCBI taxonomy ID by removing the last two digits of a BERN species ID. | ||
# | ||
# Example. | ||
# 1009505 -> 10095 | ||
# | ||
# Mus sp., mice | ||
# https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=10095 | ||
|
||
graph.run(species_ncbi_query) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,2 @@ | ||
neo4j | ||
py2neo | ||
requests |