-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Support: Add dedicated documentation page about poly-fills and utilities
- Loading branch information
Showing
4 changed files
with
154 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -18,3 +18,4 @@ CrateDB SQLAlchemy dialect -- all pages | |
advanced-querying | ||
inspection-reflection | ||
dataframe | ||
support |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,148 @@ | ||
(support-features)= | ||
# Support Features | ||
|
||
The package bundles a few support and utility functions that try to fill a few | ||
gaps you will observe when working with CrateDB, a distributed OLAP database, | ||
since it lacks certain features, usually found in traditional OLTP databases. | ||
|
||
A few of the features outlined below are referred to as [polyfills], and | ||
emulate a few functionalities, for example, to satisfy compatibility issues on | ||
downstream frameworks or test suites. You can use them at your disposal, but | ||
you should know what you are doing, as some of them can seriously impact the | ||
performance. | ||
|
||
|
||
(support-automatic-refresh)= | ||
## Automatic Table REFRESH after DML | ||
|
||
:::{rubric} Introduction | ||
::: | ||
CrateDB is [eventually consistent]. Data written with a former statement is | ||
not guaranteed to be fetched with the next following select statement for the | ||
affected rows. | ||
|
||
Data written to CrateDB is flushed periodically, the refresh interval is | ||
1000 milliseconds by default, and can be changed. More details can be found in | ||
the reference documentation about [table refreshing](inv:crate-reference#refresh_data). | ||
|
||
There are situations where stronger consistency is required, for example when | ||
needing to satisfy test suites of 3rd party frameworks, which usually do not | ||
take such special behavior of CrateDB into consideration. | ||
|
||
:::{rubric} Utility | ||
::: | ||
The `refresh_after_dml` utility will configure an SQLAlchemy engine or session | ||
to automatically invoke relevant `REFRESH TABLE` statements after each DML | ||
operation (INSERT, UPDATE, DELETE), for the corresponding entities / tables. | ||
|
||
```python | ||
import sqlalchemy as sa | ||
from sqlalchemy_cratedb.support import refresh_after_dml | ||
|
||
engine = sa.create_engine("crate://") | ||
refresh_after_dml(engine) | ||
``` | ||
|
||
```python | ||
import sqlalchemy as sa | ||
from sqlalchemy.orm import sessionmaker | ||
from sqlalchemy_cratedb.support import refresh_after_dml | ||
|
||
engine = sa.create_engine("crate://") | ||
session = sessionmaker(bind=engine)() | ||
refresh_after_dml(session) | ||
``` | ||
|
||
:::{warning} | ||
Refreshing the table after each DML operation can cause serious | ||
performance degradation, and should only be used on low-volume, low-traffic | ||
data, when applicable, and if you know what you are doing. | ||
::: | ||
|
||
|
||
## Support for pandas and Dask | ||
Todo. | ||
|
||
|
||
## Synthetic Autoincrement using Timestamps | ||
|
||
:::{rubric} Introduction | ||
::: | ||
Todo. | ||
|
||
:::{rubric} Utility | ||
::: | ||
In order to emulate some kind of autoincrement behavior, this polyfill patch | ||
will simply assign `sa.func.now()` as a column `default`. You can use it if | ||
adjusting ORM models for your database adapter is not an option. | ||
|
||
The patch enables to optionally use `autoincrement=True` on column definitions. | ||
It works on SQLAlchemy column types `sa.BigInteger`, `sa.DateTime`, and | ||
`sa.String`. | ||
|
||
```python | ||
import sqlalchemy as sa | ||
from sqlalchemy.orm import declarative_base | ||
from sqlalchemy_cratedb.support import patch_autoincrement_timestamp | ||
|
||
# Enable patch. | ||
patch_autoincrement_timestamp() | ||
|
||
# Define database schema. | ||
Base = declarative_base() | ||
|
||
class FooBar(Base): | ||
id = sa.Column(sa.DateTime, primary_key=True, autoincrement=True) | ||
``` | ||
|
||
|
||
## Synthetic UNIQUE Constraints | ||
|
||
:::{rubric} Introduction | ||
::: | ||
CrateDB does not provide `UNIQUE` constraints. Because of its distributed | ||
nature, it would be an expensive operation. | ||
|
||
:::{rubric} Utility | ||
::: | ||
This feature emulates "unique constraints" functionality by querying the | ||
table for unique values before invoking the SQL `INSERT` operation. | ||
When the uniqueness constraint is violated, the adapter will raise a | ||
corresponding exception. | ||
```python | ||
IntegrityError: DuplicateKeyException in table 'foobar' on constraint 'name' | ||
``` | ||
|
||
```python | ||
import sqlalchemy as sa | ||
from sqlalchemy.orm import declarative_base | ||
from sqlalchemy.event import listen | ||
from sqlalchemy_cratedb.support import check_uniqueness_factory | ||
|
||
# Define database schema. | ||
Base = declarative_base() | ||
|
||
class FooBar(Base): | ||
id = sa.Column(sa.String, primary_key=True) | ||
name = sa.Column(sa.String) | ||
|
||
# Add synthetic UNIQUE constraint on `name` column. | ||
listen(FooBar, "before_insert", check_uniqueness_factory(FooBar, "name")) | ||
``` | ||
|
||
:::{note} | ||
This feature will only work well if table data is consistent, which can be | ||
ensured by invoking a `REFRESH TABLE` statement after any DML operation. | ||
For conveniently enabling "always refresh", please refer to the documentation | ||
section about [](#support-automatic-refresh). | ||
::: | ||
|
||
:::{warning} | ||
Querying the table before each insert operation can cause serious | ||
performance degradation, and should only be used on low-volume, low-traffic | ||
data, when applicable, and if you know what you are doing. | ||
::: | ||
|
||
|
||
[eventually consistent]: https://en.wikipedia.org/wiki/Eventual_consistency | ||
[polyfills]: https://en.wikipedia.org/wiki/Polyfill_(programming) |