forked from bklieger-groq/g1
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b3616c2
commit e13de7c
Showing
1 changed file
with
87 additions
and
76 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,76 +1,87 @@ | ||
import streamlit as st | ||
import groq | ||
import hypernetx as hnx | ||
import oolama # Certifique-se de que o módulo oolama esteja disponível | ||
|
||
client = groq.Groq() | ||
|
||
def build_hypergraph(input_data): | ||
try: | ||
tokens = oolama.tokenize(input_data) | ||
entities = oolama.extract_entities(tokens) | ||
relations = oolama.extract_relations(tokens) | ||
|
||
hypergraph = hnx.Hypergraph() | ||
for entity in entities: | ||
hypergraph.add_node(entity) | ||
for relation in relations: | ||
hypergraph.add_edge(relation['entities'], relation['type']) | ||
|
||
return hypergraph | ||
except Exception as e: | ||
st.error(f"Erro ao construir o hipergrafo: {e}") | ||
return None | ||
|
||
def infer_on_hypergraph(hypergraph): | ||
try: | ||
oolama_input = hnx.convert_to_oolama_format(hypergraph) | ||
results = oolama.infer(oolama_input) | ||
return results | ||
except Exception as e: | ||
st.error(f"Erro ao realizar inferência no hipergrafo: {e}") | ||
return None | ||
|
||
def format_hypergraph_inference_results(results): | ||
try: | ||
formatted_results = oolama.format_results(results) | ||
return formatted_results | ||
except Exception as e: | ||
st.error(f"Erro ao formatar os resultados da inferência: {e}") | ||
return None | ||
|
||
def generate_hypergraph_response(prompt): | ||
hypergraph = build_hypergraph(prompt) | ||
if hypergraph is None: | ||
return "Erro ao gerar hipergrafo." | ||
|
||
results = infer_on_hypergraph(hypergraph) | ||
if results is None: | ||
return "Erro ao realizar inferência no hipergrafo." | ||
|
||
formatted_results = format_hypergraph_inference_results(results) | ||
if formatted_results is None: | ||
return "Erro ao formatar os resultados da inferência." | ||
|
||
return formatted_results | ||
|
||
def main(): | ||
st.set_page_config(page_title="g1 prototype", page_icon="🧠", layout="wide") | ||
|
||
st.title("g1: Usando Llama-3.1 70b no Groq com Cadeias de Raciocínio Baseadas em Arquitetura de Hipergrafos") | ||
|
||
st.markdown(""" | ||
Este é um protótipo inicial que utiliza métodos heurísticos e hermenêuticos com uma arquitetura de hipergrafos para melhorar a precisão das saídas. | ||
""") | ||
|
||
user_query = st.text_input("Insira sua consulta:", placeholder="Por exemplo, Quantos 'R's existem na palavra morango?") | ||
|
||
if user_query: | ||
st.write("Gerando resposta com base na arquitetura de hipergrafos...") | ||
|
||
response = generate_hypergraph_response(user_query) | ||
|
||
st.write(response) | ||
|
||
if _name_ == "_main_": | ||
main() | ||
""" | ||
This module provides functionalities for processing input data and generating hypergraphs. | ||
""" | ||
|
||
import streamlit as st | ||
import groq | ||
import hypernetx as hnx | ||
import oolama | ||
|
||
def process_input_data(input_data): | ||
""" | ||
Process the input data to extract entities and relations, and create a hypergraph. | ||
Args: | ||
input_data (str): The input data to process. | ||
Returns: | ||
hnx.Hypergraph: The generated hypergraph. | ||
""" | ||
try: | ||
tokens = oolama.tokenize(input_data) | ||
entities = oolama.extract_entities(tokens) | ||
relations = oolama.extract_relations(tokens) | ||
|
||
hypergraph = hnx.Hypergraph() | ||
for entity in entities: | ||
hypergraph.add_node(entity) | ||
for relation in relations: | ||
hypergraph.add_edge(relation['entities'], relation['type']) | ||
|
||
return hypergraph | ||
except oolama.OolamaError as e: | ||
st.error(f"Error processing input data: {e}") | ||
return None | ||
|
||
def infer_on_hypergraph(hypergraph): | ||
""" | ||
Perform inference on the given hypergraph. | ||
Args: | ||
hypergraph (hnx.Hypergraph): The hypergraph to perform inference on. | ||
Returns: | ||
dict: The inference results. | ||
""" | ||
try: | ||
oolama_input = hnx.convert_to_oolama_format(hypergraph) | ||
results = oolama.infer(oolama_input) | ||
return results | ||
except oolama.OolamaError as e: | ||
st.error(f"Error during inference: {e}") | ||
return None | ||
|
||
def format_hypergraph_inference_results(results): | ||
""" | ||
Format the inference results for display. | ||
Args: | ||
results (dict): The inference results to format. | ||
Returns: | ||
str: The formatted results. | ||
""" | ||
try: | ||
formatted_results = "\n".join([f"{key}: {value}" for key, value in results.items()]) | ||
return formatted_results | ||
except Exception as e: | ||
st.error(f"Error formatting results: {e}") | ||
return "" | ||
|
||
def main(): | ||
""" | ||
Main function to run the Streamlit app. | ||
""" | ||
st.title("Hypergraph Inference App") | ||
|
||
input_data = st.text_area("Enter input data:") | ||
if st.button("Process"): | ||
hypergraph = process_input_data(input_data) | ||
if hypergraph: | ||
results = infer_on_hypergraph(hypergraph) | ||
if results: | ||
formatted_results = format_hypergraph_inference_results(results) | ||
st.text_area("Inference Results:", formatted_results) | ||
|
||
if __name__ == "__main__": | ||
main() |